logo
когерентная оптика

21.Распространение взаимной когерентности.

Пусть u(P,t) - скалярная амплитуда одной компоненты поляризации электрического или магнитного поля, связанная с монохроматическим оптическим сигналом (излучением). В соответствии с принятым в скалярной теории подходом, рассмотрим каждую компоненту независимо. Здесь Р - пространственная координата точки, а параметр t - момент времени.

Аналитический сигнал, связанный с u(P,t), имеет вид где ν - частота волны, а U(P,ν) - амплитуда фазора.

Пусть волна падает слева на неограниченную поверхность. Необходимо найти амплитуду фазора поля в точке Ро справа от поверхности Σ через характеристики поля на поверхности Σ.

В соответствии с принципом Гюйгенса-Френеля справедливо следующее решение

где λ = с /ν - длина волны излучения (с - скорость света); r - расстояние от точки Р1 до точки Р0; θ - угол между прямой линией, соединяющей Р0 и Р1 , и нормалью к поверхности Σ ; χ(θ) – коэффициент наклона, .

Как правило, рассмотрение большинства задач ведется в приближении малых углов наклона и поэтому в дальнейшем, мы будем считать этот множитель равным единице.

Принцип Гюйгенса-Френеля можно интерпретировать таким образом. Каждая точка на поверхности Σ действует как новый вторичный источник сферических волн. Напряженность поля вторичного источника в точке Р1 пропорциональна , и этот источник излучает с амплитудным коэффициентом направленности χ(θ).

Рис. 6.2. Схема распространения излучения

Функция взаимной когерентности. При распространении волны в пространстве ее структура изменяется. Изменяется соответственно и функция взаимной когерентности. Следовательно, можно говорить о распространении функции взаимной когерентности.

Причина эта объясняется тем фактом, что световые волны подчиняются волновому уравнению.

Рис. 6.3. Распространение функции взаимной когерентности

22. Предельные формы взаимной когерентности. Когерентное поле. Волновое поле называется полностью когерентным, если для всякой пары точек (P1,P2) существует задержка τ12 (функция точек (P1,P2)) такая, что

Кроме того, можно показать, что волновое поле называется полностью когерентным при том и только при том условии, что для всякой пары точек P1 и P2 существует временная задержка τ12, такая, что комплексные огибающие двух сигналов с относительной задержкой τ12 различаются только не зависящим от времени постоянным комплексным множителем A(P2,t) = k12 A(P1,t + τ12); k12 - комплексная постоянная, которая, вообще говоря, зависит от точек Р1 и P2.

Если поле можно считать квазимонохроматическим, то это условие должно выполняться для всех пар точек, возможных в эксперименте. Это означает, что для всех точек (P1,P2) требуется одно и то же время задержки τ12, чтобы исключить эффекты временной когерентности. Если отверстие P1 приблизить к P2, то единственная задержка τ12, которая соответствует максимуму |Г12( τ)|, должна быть тождественно равна нулю. В этом случае комплексные огибающие в точках P1 и P2 связаны соотношением A(P2,t) = k12A(P1,t).

Таким образом, комплексные огибающие во всех точках изменяются согласованно, различаясь только не зависящими от времени амплитудами и фазовыми множителями.

Некогерентное поле. Понятию полностью когерентного поля противоположно понятие некогерентного. Поэтому было бы естественным считать поле некогерентным, если выполняется условие |Г12( τ)|= 0 для всех P1 ≠ P2 и при всех τ. Но это определение не имеет реального смысла.

Подставив Г[P1,P2; τ + (r2 - r1)/c] в выражение для распространения взаимной когерентности и проинтегрировав сначала по поверхности Σ1, получим, что подынтегральное выражение во втором интеграле будет равно нулю всюду, кроме точек P1 = P2. Таким образом, второе интегрирование дает нуль, и мы получаем Г (Q1,Q2;τ) = 0.

Если положить τ = 0 и Q1 = Q2, то из последнего равенства следует I(Q1) = I(Q2) = 0.

Следовательно, если волновое поле на поверхности Σ1 некогерентно, то оно не достигает поверхности Σ2 ! Т.е. поверхность не излучает.

Yandex.RTB R-A-252273-3
Yandex.RTB R-A-252273-4