logo
когерентная оптика

36.Когерентность лазерного излучения

Поперечная структура реальных лазерных пучков имеет случайный характер, что обусловлено целым рядом естественных причин: спонтанные шумы, статистика многих поперечных мод.

Рис. 7.1. Причины случайного характера поперечной структуры реальных лазерных пучков

Чем же определяются характерные масштабы поперечных корреляций лазерного излучения? Предположим, что возбуждаемые в лазере моды с различными поперечными индексами m и n вырождены по частоте, тогда многомодовое излучение можно записать следующим образом

где Am,n и ϕm,n - не зависящие от времени комплексные амплитуды и фазы мод, z - координата вдоль направления распространения пучка, отсчитываемая от области перетяжки.

Распределение амплитуд Am,n зависит от типа оптического резонатора и формы зеркал.

Наиболее простой вид распределения амплитуды Am,n имеют для плоскопараллельного резонатора (случай прямоугольных зеркал)

где β, комплексный параметр, зависящий от базы резонатора и апертуры зеркал.

Аналогичный вид имеет функция fn(y).

Для пространственной поперечной корреляционной функции на выходе резонатора по определению имеем:

В случае статистически независимых фаз ϕm,n поперечных мод

Рассчитаем корреляционную функцию вблизи центра пучка r = 0), смещение s зададим вдоль оси x и будем считать, что возбуждаются поперечные моды с индексами от m = 1 до m = N.

Пусть N нечетно и коэффициенты hm,n - одинаковы, тогда для пространственной поперечной корреляционной функции получим

При большом числе поперечных мод N >> 1, модуль степени пространственной когерентности равен

Модуль степени пространственной когерентности является квазипериодической функцией. В реальных случаях база резонатора L много больше характерного размера зеркал a (L >> a), а число Френеля (ka2 / 2πL) ≥1.

С учетом этого условия, радиус корреляции rk ≈ a / N.

Таким образом, для многомодовых лазерных пучков, возбуждаемых в плоскопараллельном резонаторе с прямоугольными зеркалами радиус корреляции обратно пропорционален числу возбуждаемых поперечных мод N.

Но это соотношение можно использовать лишь для грубых оценок. Отличия от эксперимента могут быть связаны с неоднородностями активной среды, неравномерностью распределения интенсивностей по модам.

Приближенный расчет радиуса корреляции лазерного поля со статистически независимыми модами можно выполнить и другим способом - оценивая средний размер неоднородности по возбуждаемым модам, который в соответствии с выражением для распределения амплитуды моды по половинному уровню можно оценить как rm ≈ 2a ⁄ m.

Для плоского резонатора получим rk ≈ 2a ln N/N .

Таким образом, данное выражение, которое получается исходя из поперечной неоднородности лазерного пучка, дает практически такую же зависимость, что и предыдущее.

При наличии неоднородностей внутри резонатора даже для плоскопараллельного резонатора более адекватной оказывается модель сферического резонатора.

Аналогичным способом, исходя из масштаба радиальных неоднородностей можно найти радиус корреляции для сферического резонатора

Последнее выражение существенно отличается от выражения, полученного для плоского резонатора, т.к. в последнем случае с увеличением номера радиального индекса поперечной моды n размер поперечных осцилляций становится обратно пропорциональным , где n радиальный индекс полинома Лагерра, определяющий число радиальных осцилляций в моде сферического резонатора. То есть радиус корреляции уменьшается значительно медленней (скорость спада функции когерентности меньше).

Рис. 7.4. Зависимость радиуса поперечной корреляции от формы резонатора

Радиус корреляции лазерного пучка, как и ширина пучка, является функцией продольной координаты z. Измерения показали, что для многомодового режима при удалении от выходного зеркала отношение диаметра пучка к радиусу корреляции сохраняется постоянным: D(z)/rк = const., что следует из характера изменения масштаба неоднородностей поля при распространении лазерного пучка. Оно пропорционально πr /m.

Поведение пространственной корреляционной функции излучения многомодового лазера, с изменением числа генерируемых поперечных мод, хорошо согласуется с представлениями, основанными на описании поперечного распределения лазерного поля, как результата наложения статистически независимых поперечных мод. Для точного расчета формы поперечных корреляционных функций необходимо располагать информацией об амплитудах мод, возбуждаемых в лазере.

Следует отметить, что при большом числе поперечных мод, корреляционная функция поля близка по виду к корреляционной функции однородного δ коррелированного шума, профильтрованного через круглую диафрагму (теорема Ван Циттерта-Цернике).

Измерение функции когерентности при разных смещениях относительно центра пучка, показывает, что при многомодовом режиме работы минимальный радиус корреляции оказывается в центре лазерного пучка. При смещении к периферии пучка радиус корреляции растет (рис. 7.6). Этот факт объясняется неравномерной однородностью пучка по поперечному сечению. Наглядно это можно увидеть, если нарисовать суперпозицию мод в лазерном пучке. В центре пучка присутствуют все моды - максимальная неоднородность; к периферии визуально степень неоднородности уменьшается.

Yandex.RTB R-A-252273-3
Yandex.RTB R-A-252273-4