53.Определение преобразования Фурье
Анализ Фурье и теория линейных систем образуют фундамент, на котором построены теории формирования изображения, оптической обработки информации и голографии.
По определению преобразованием Фурье функции f(x) (действительной или комплексной) называется интегральная операция
.
Преобразование такого вида представляет собой функцию независимой переменной u, называемой частотой. Обратное преобразование Фурье функции F(u) записывается следующим образом
.
Необходимым условием существования преобразования Фурье является абсолютная интегрируемость функций f(x) и F(u), т.е. чтобы значения интегралов
были конечными. Функции, используемые в оптике, определены лишь на ограниченном интервале и для них это требование соблюдается всегда (переменные x и u называются сопряженными). Различия между прямым Фурье-образом и обратным Фурье-образом заключается в различных знаках, содержащихся в экспонентах выражений, а также в наличии множителя 1/2π в формуле обратного преобразования.
В литературе встречаются и другие определения преобразования Фурье, отличающиеся от приведенного здесь как знаком в экспоненте, так и численными коэффициентами, стоящими перед интегралом.
Аналогичным образом определяется и двумерное Фурье-преобразование.
Прямое
(1.1)
и обратное
Введем в выражении (1.1) обозначения u = x/λz; v = y/λz.
Величины u и v обычно называются частотами. Тогда выражение (1.1) примет вид
где
Отсюда видно, что выражение (1.1) с точностью до множителя представляет собой Фурье-образ распределения поля на поверхности σ как функцию пространственных частот u и v. Аналогичным образом можно преобразовать и выражение для сферической системы координат, введя обозначения
Большое распространение имеет и частный случай двумерного преобразования Фурье для функций, обладающих осевой симметрией, называемый преобразованием Фурье-Бесселя или преобразованием Ганкеля нулевого порядка. Если функция обладает осевой симметрией ее можно записать как функцию только радиуса r. Соответственно, Фурье-образ становится функцией ρ, не зависящей явно от угла ϕ.
где J0(2πrρ) - функция Бесселя первого рода нулевого порядка.
Учитывая, что
прямое преобразование Фурье можно записать в виде суммы косинус - и синус - преобразований:
В общем случае функция F(u,v) комплексная, и мы можем записать
Спектр амплитуд и фаз записывается соответственно в виде
Действительная часть Фурье-образа всегда четная функция, мнимая часть Фурье-образа - всегда нечетная функция. Комплексность спектра означает сдвиг отдельных его составляющих по фазе
Yandex.RTB R-A-252273-3
- 1.Оптический сигнал и оптическая система
- 2.Интерференция в диффузном свете. Спекл-интерферометрия. Опыт Берча-Токарского
- 3.Оптика спеклов Основные свойства спекл-картины, условия формирования
- 4.Нормально развитая спекл-картина, условия ее наблюдения, контраст спекл-картины, индивидуальный спекл
- 8.Учет дискретности спектра подсвечивающего излучения и направления подсвета
- 9.Многомодовый режим излучения лазера.
- 10.Дифракция частично когерентного излучения на отверстии
- 11. Примеры. Основные свойства преобразования Фурье
- 14.Трансляционная симметрия дифракционной картины
- 17.Обобщенные функции. Свертка. Функция корреляции.
- 21.Распространение взаимной когерентности.
- 23.Пример: Дифракция частично когерентного излучения на щели . Пример: Дифракция частично когерентного излучения на щели
- 24.Фурье-образы наиболее часто встречающихся в оптике двумерных сигналов и их свойства
- 25.Типы оптических систем
- 26.Единство и различие явлений дифракция и интерференция
- 27.Временная когерентность излучения лазера
- 28.Пространственная фильтрация
- 29.Оптический сигнал и его преобразование
- 30.Оптика винтовых полей или сингулярная оптика
- 31.Наиболее часто встречающиеся в оптике специальные функции в связи с применением теории систем и преобразований
- 33.Представление поля в дальней зоне через интеграл Фурье
- 36.Когерентность лазерного излучения
- 37.Оптические системы, операторы, функционалы.
- 38.Основные свойства преобразования Фурье
- 39.Принцип неопределенности в теории оптического сигнала
- 40.Предельная пространственная когерентность излучения одномодового лазера
- 41.Ограничение разрешающей способности оптической системы и информационной емкости оптических сигналов
- 42.Когерентное поле, некогерентное поле
- 43.Квантовая природа электромагнитного излучения
- 44.Контраст дифракционной картины
- 45. Свойства симметрии дифракционной картины
- 46.Квантовая природа электромагнитного излучения.
- 47.Корреляционные функции и когерентность излучения
- 48.Разрешающая сила оптической системы в классическом рассмотрении
- 49.Квантовомеханическая модель дифракции монохроматического излучения на щели
- 50.Геометрическая теория дифракции
- 51.Принцип Бабине
- 52.Световое давление
- 53.Определение преобразования Фурье
- 54.Статистические характеристики когерентных изображений.
- 55.Двумерные функции
- 56.Основные свойства спекл-картины, условия формирования
- 57.Теория когерентных изображений
- 58.Способы устранения спекл-структуры
- 59.Понятие обобщенных функций. Свойства. Операции
- 60.Понятие спекл, объективной и субъективной спекл-картины.
- 61. Контраст изображения