logo
когерентная оптика

53.Определение преобразования Фурье

Анализ Фурье и теория линейных систем образуют фундамент, на котором построены теории формирования изображения, оптической обработки информации и голографии.

По определению преобразованием Фурье функции f(x) (действительной или комплексной) называется интегральная операция

.

Преобразование такого вида представляет собой функцию независимой переменной u, называемой частотой. Обратное преобразование Фурье функции F(u) записывается следующим образом

.

Необходимым условием существования преобразования Фурье является абсолютная интегрируемость функций f(x) и F(u), т.е. чтобы значения интегралов

были конечными. Функции, используемые в оптике, определены лишь на ограниченном интервале и для них это требование соблюдается всегда (переменные x и u называются сопряженными). Различия между прямым Фурье-образом и обратным Фурье-образом заключается в различных знаках, содержащихся в экспонентах выражений, а также в наличии множителя 1/2π в формуле обратного преобразования.

В литературе встречаются и другие определения преобразования Фурье, отличающиеся от приведенного здесь как знаком в экспоненте, так и численными коэффициентами, стоящими перед интегралом.

Аналогичным образом определяется и двумерное Фурье-преобразование.

Прямое

(1.1)

и обратное

Введем в выражении (1.1) обозначения u = x/λz; v = y/λz.

Величины u и v обычно называются частотами. Тогда выражение (1.1) примет вид

где

Отсюда видно, что выражение (1.1) с точностью до множителя представляет собой Фурье-образ распределения поля на поверхности σ как функцию пространственных частот u и v. Аналогичным образом можно преобразовать и выражение для сферической системы координат, введя обозначения

Большое распространение имеет и частный случай двумерного преобразования Фурье для функций, обладающих осевой симметрией, называемый преобразованием Фурье-Бесселя или преобразованием Ганкеля нулевого порядка. Если функция обладает осевой симметрией ее можно записать как функцию только радиуса r. Соответственно, Фурье-образ становится функцией ρ, не зависящей явно от угла ϕ.

где J0(2πrρ) - функция Бесселя первого рода нулевого порядка.

Учитывая, что

прямое преобразование Фурье можно записать в виде суммы косинус - и синус - преобразований:

В общем случае функция F(u,v) комплексная, и мы можем записать

Спектр амплитуд и фаз записывается соответственно в виде

Действительная часть Фурье-образа всегда четная функция, мнимая часть Фурье-образа - всегда нечетная функция. Комплексность спектра означает сдвиг отдельных его составляющих по фазе

Yandex.RTB R-A-252273-3
Yandex.RTB R-A-252273-4