Завоевание суши
Первые животные эволюционировали в воде из сферических и червеобразных масс клеток. Они все еще были слишком малы, но некоторые из них формировали сообщества, которые коллективно строили огромные коралловые рифы в виде плотных кальциевых отложений. Не обладая твердыми частями или внутренними скелетами, ранние животные полностью разлагались после смерти, однако сотню миллионов лет спустя их потомки построили множество изысканных раковин и скелетов, которые оставили отчетливые отпечатки в хорошо сохранившихся ископаемых породах.
Для животных адаптация к жизни на суше стала эволюционным подвигом, потребовавшим решительных изменений в системе органов. Серьезнейшую проблему в условиях недостатка воды, конечно, представляло обезвоживание; хватало, однако, и других проблем. В атмосфере было неизмеримо больше кислорода, чем в океанах, что требовало других органов для дыхания; были необходимы различные типы кожи для защиты от нефильтрованного солнечного облучения; требовались более крепкие мускулы и кости, чтобы справляться с гравитацией без помощи архимедовой силы.
Чтобы облегчить переход в это совершенно незнакомое окружение, животные изобрели весьма остроумный трюк. Они забрали с собой, ради юных особей, свое прежнее окружение. По сегодняшний день утроба животного имитирует влажность, текучесть и соленость древнего морского окружения. Более того, концентрация солей в крови и других телесных жидкостях млекопитающих замечательным образом соответствует концентрации солей в океане. Мы вышли из океана более 400 миллионов лет тому назад, но никогда не расставались с морской водой. Мы и теперь обнаруживаем ее в своей крови, поте и слезах.
Другое важное нововведение, которое стало существенным для жизни на суше, касалось регуляции содержания кальция. Кальций играет центральную роль в метаболизме всех ядерных клеток. В частности, он необходим для функционирования мышц. Для того чтобы эти метаболические процессы работали, количество кальция должно очень точно поддерживаться на определенных уровнях, гораздо более низких, чем в морской воде. Поэтому морским животным с самого начала пришлось непрерывно удалять весь избыточный кальций. Ранние животные просто выделяли свои кальциевые отходы, иногда нагромождая из них массивные коралловые рифы. По мере того как эволюционировали более крупные животные, они стали накапливать кальций вокруг и внутри себя, и эти отложения в конце концов превратились в раковины и скелеты.
Подобно тому как сине-зеленые бактерии преобразовали токсичный загрязнитель, кислород, в жизненно важный ингредиент своей дальнейшей эволюции, так ранние животные преобразовали другой серьезный загрязнитель, кальций, в строительный материал для новых структур, которые давали им огромные преимущества в ходе отбора. Раковины и другие твердые части использовались для защиты от хищников, тогда как скелеты, впервые появившиеся у рыб, впоследствии эволюционировали в важные поддерживающие структуры всех крупных животных.
Начало так называемого кембрийского периода (около 580 млн. лет назад) отмечено таким изобилием ископаемых пород с красивыми и четкими отпечатками раковин, твердых покровов и скелетов, что палеонтологи долгое время считали эти кембрийские породы свидетельствами начала жизни. Иногда их даже рассматривали как божественные следы первых актов творения. Лишь в последние три десятилетия следы микрокосма стали обнаруживать в так называемых «химических ископаемых»45. Эти находки убедительно показывают, что зарождение жизни опережает кембрийский период почти на три миллиарда лет.
Эволюционные эксперименты с отложениями кальция привели к огромному разнообразию форм — трубчатые «морские спринцовки» со спинным хребтом, но без костей; рыбообразные создания с внешним панцирем, но без челюстей; рыбы, дышащие как в воде, так и в атмосфере, и многие другие. Первые позвоночные со спинным хребтом и черепным костным скелетом, защищающим нервную систему, вероятно, появились около 500 миллионов лет назад. Среди них были предки рыб с легкими короткими плавниками, с челюстями и головой как у лягушки; они ползали вдоль берега и в конце концов эволюционировали в первых амфибий. Амфибии (земноводные) — лягушки, жабы, саламандры и тритоны — служат эволюционным связующим звеном между водными и сухопутными животными. Это первые наземные позвоночные, но даже сегодня они начинают свой жизненный цикл как головастики, дышащие в воде.
Первые насекомые вышли на берег примерно в то же время, что и амфибии, и, возможно, даже побудили некоторых рыб последовать за собой, представляя для них лакомую пищу. На суше насекомые породили неимоверное разнообразие видов. Малые размеры и высокая скорость размножения позволяли им приспосабливаться почти к любой окружающей среде, развивая фантастическое разнообразие телесных структур и режимов жизни. Сегодня известно около 750 000 видов насекомых, в три раза больше, чем всех остальных видов животных вместе взятых.
В течение 150 миллионов лет после выхода из моря амфибии эволюционировали в рептилий, обладавших значительными преимуществами при отборе — мощными челюстями, кожей, защищающей от засухи, и, что важнее всего, новым типом откладываемых яиц. Как это станут позже делать млекопитающие в своей утробе, рептилии заключили прежнюю среду обитания в большие яйца, внутри которых их отпрыски могли полностью подготовиться к жизненному циклу на суше. Вооруженные этими инновациями, рептилии быстро завоевали сушу и образовали множество разновидностей. Многие виды ящериц, которые существуют до сих пор, являются потомками этих древних рептилий.
Эволюция растений и животных | |
Млн лет назад | Стадии эволюции |
700 | ранние животные |
620 | зачатки мозга у животных |
580 | раковины и скелеты |
500 | позвоночные |
450 | растения выходят на сушу |
400 | амфибии и насекомые выходят на сушу |
350 | семенные папоротники |
300 | грибы |
250 | рептилии |
225 | хвойные и динозавры |
200 | млекопитающие |
150 | птицы |
125 | цветковые растения |
70 | вымирание динозавров |
65 | ранние приматы |
35 | мартышки |
20 | обезьяны |
10 | человекообразные обезьяны |
4 | прямоходящие «южные обезьяны» |
Пока первое поколение рыб выбиралось из воды и превращалось в амфибий, на суше уже процветали кустарники и деревья, и когда амфибии превратились в рептилий, они очутились в густых тропических лесах. В это же время вышел на сушу третий тип многоклеточных организмов —
грибы. Грибы похожи на растения, но в то же время столь отличны от них, что были выделены в особое царство, проявляющее ряд замечательных свойств46. У них отсутствует зеленый хлорофилл для фотосинтеза, они не едят и не переваривают, но поглощают нужные питательные вещества непосредственно в форме химических соединений. В отличие от растений, грибы не обладают сосудистой системой для формирования корней, стеблей и листьев. У них есть вполне различимые клетки, которые могут содержать несколько ядер и отделяются друг от друга тонкими стенками, сквозь которые свободно протекает клеточная жидкость.
Грибы появились более 300 миллионов лет назад и распространялись через тесную совместную эволюцию с растениями. Фактически все растения, произрастающие на Земле, опираются на помощь крошечных грибков, которые живут в их корнях и обеспечивают поглощение азота. В лесу корни всех деревьев взаимосвязаны через обширную грибковую сеть, которая временами прорывается на поверхность в виде лесных грибов. Без грибов не могли бы существовать первобытные тропические леса.
Через тридцать миллионов лет после появления первых рептилий одна из их родовых ветвей эволюционировала в динозавров (греческий термин, в переводе означающий «ужасные ящерицы»), бесконечное очарование которых, похоже, признают люди всех возрастов. Динозавры отличались огромным разнообразием размеров и форм. Некоторые из них обладали панцирем, закрывавшим тело, и костяными наростами — как современные черепахи или носороги. Одни были травоядными, другие — плотоядными. Подобно другим рептилиям, динозавры откладывали яйца. Многие из них строили гнезда, а некоторые даже развили крылья и в итоге, около 150 миллионов лет назад, эволюционировали в птиц.
Во времена динозавров распространение рептилий шло полным ходом. Суша и воды были заселены змеями, ящерицами и морскими черепахами, а также морскими змеями и несколькими видами динозавров. Примерно 70 миллионов лет назад динозавры и множество других видов внезапно исчезли, вероятнее всего, в результате падения на Землю огромного метеорита около 7 миль в поперечнике. Катастрофический взрыв вызвал огромное облако пыли, которое на длительный период затмило солнечный свет и привело к критическому изменению погодных паттернов на всей Земле; этих перемен огромные динозавры не смогли пережить.
- Паутина
- Часть I. Культурный контекст
- Часть I культурный контекст
- Глава 1 Глубокая экология: новая парадигма
- Кризис представлений
- Сдвиг парадигмы
- Глубокая экология
- Социальная экология и экофеминизм
- Новые ценности
- Сдвиг от физики к наукам о жизни
- Часть II расцвет системного мышления
- Глава 2
- От частей к целому
- Вещество и форма
- Картезианский механицизм
- Движение романтиков
- Витализм
- Организменная биология
- Системное мышление
- Квантовая физика
- Гештальт-психология
- Экология
- Глава 3 теории систем
- Критерии системного мышления
- Процессуальное мышление
- Тектология
- Глава 4 логика разума
- Кибернетика
- Обратная связь
- Теория информации
- Кибернетика мозга
- Компьютерная модель обучения
- Часть III
- Расцвет молекулярной биологии
- Сети — паттерны жизни
- Появление концепции самоорганизации
- Диссипативные структуры
- Теория лазеров
- Гиперциклы
- Автопоэз — организация живого
- Гайя — живая Земля
- Глава 6 Математика сложных систем
- Лицом к лицу со сложностью
- Нелинейность
- Обратная связь и итерации
- Пуанкаре и следы хаоса
- Траектории в абстрактных пространствах
- Странные аттракторы
- «Эффект бабочки»
- От количества к качеству
- Фрактальная геометрия
- Математика сложных систем
- Комплексные числа
- Паттерны внутри паттернов
- Часть IV
- Три ключевых критерия
- Паттерн организации
- Структура
- Жизненный процесс
- Автопоэз — паттерн жизни
- Диссипативная структура — структура живых систем
- Обучение — процесс жизни
- Глава 8 диссипативные структуры Структура и изменение
- Неравновесные состояния и нелинейность
- Стрела времени
- Порядок и беспорядок
- Точки неустойчивости
- Новый диалог с природой
- Глава 9 Самосозидание Клеточные автоматы
- Имитация автопоэзных сетей
- Двоичные сети
- У границы хаоса
- Жизнь в ее минимальной форме
- Организмы и сообщества
- Автопоэз в социальной сфере
- Система Гайи
- Вселенная в целом
- Структурное сопряжение
- Развитие и эволюция
- Глава 10 Раскрытие жизни
- Дарвинизм и неодарвинизм
- Системный взгляд на эволюцию
- Направления творчества
- Эволюция через симбиоз
- Эпохи жизни
- Происхождение жизни
- Как сплеталась бактериальная паутина
- Кислородный кризис
- Ядерная клетка
- Эволюция растений и животных
- Завоевание суши
- Забота о молодом поколении
- Глава 11 Сотворение мира
- Когнитивная наука
- Теория Сантьяго
- Не отображение, не информация
- Матурана и Бэйтсон
- Пересмотр компьютерной модели
- Когнитивная иммунология
- Психосоматическая сеть
- Глава 12 Знать о своем знании
- Язык и общение
- Человеческое состояние
- Эпилог. Экологическая грамотность
- Приложение: Возвращаясь к Бэйтсону