Комплексные числа
Вершиной фрактальной геометрии стало открытие Мандельбро математической структуры, которая обладает ошеломляющей сложностью и все же может быть воспроизведена с помощью очень простой итеративной процедуры. Чтобы понять эту поразительную фрактальную фигуру, известную как множество Мандельбро, необходимо сначала ознакомиться с одним из важнейших математических понятий — комплексными числами.
Открытие комплексных чисел стало восхитительной главой в истории математики28. Когда в средние века возникла алгебра и математики принялись исследовать все виды уравнений и классифицировать их решения, они вскоре столкнулись с задачами, не имевшими решения в рамках множества известных им чисел. В частности, уравнения типа х + 5 = 3 заставили их расширить понятие числа до отрицательных чисел, так чтобы решение могло быть записано как х = -2. В дальнейшем так называемые действительные числа — положительные и отрицательные целые числа, дроби и иррациональные числа (например, квадратные корни или знаменитое число п) — стали представлять как точки на единой плотно населенной числовой оси (рис. 6-16).
-5/2 1/2 π
-4 -3 -2 -1 0 1 2 3 4
Рис. 6-16 Числовая ось
С таким расширением понятия числа все алгебраические уравнения, в принципе, могли быть решены — за исключением тех, где фигурировали квадратные корни отрицательных чисел. Уравнение х2 = 4 имеет два решения: х = 2 и х = -2; однако для х2 = -4, по всей видимости, не должно быть решения, поскольку ни +2, ни - 2 при возведении в квадрат не дадут -4.
Древние индийские и арабские алгебраисты постоянно встречались с такими уравнениями, но отказывались даже записывать выражения типа , считая их абсолютно бессмысленными. И только вXVI веке квадратные корни отрицательных чисел стали появляться в алгебраических текстах, но и тогда авторы спешили пояснить, что такие выражения на самом деле ничего не означают.
Декарт называл квадратный корень отрицательного числа «мнимым числом» и был уверен, что появление таких мнимых чисел в расчетах означает, что проблема неразрешима. Другие математики использовали термины «фиктивные», «фальшивые» или «невозможные» для обозначения величин, которые сегодня мы, с легкой руки Декарта, все еще называем мнимыми числами.
Поскольку квадратный корень отрицательного числа не может быть помещен ни в одной точке числовой оси, математики, вплоть до XIX столетия, не могли наделить эти величины никаким реальным смыслом. Великий Лейбниц, изобретатель дифференциального исчисления, приписывал выражению мистические свойства, видя в нем проявление Божественного Духа и называя его «этой амфибией между бытием и небытием»29. Столетие спустя Леонард Эйлер, самый плодотворный математик всех времен, выразил ту же мысль в своей «Алгебре» словами хотя и менее поэтичными, но все же содержащими отголосок Чуда:
Следовательно, все такие выражения, как ,и т. п., есть невозможные, или мнимые числа, поскольку представляют корни отрицательных величин; по поводу таких чисел мы можем достоверно утверждать, что они ни ничто, ни нечто большее, чем ничто, ни нечто меньшее, чем ничто, из чего неизбежно следует, что они мнимы, или невозможны30.
В XIX веке другой математический гений, Карл Фридрих Гаусс, окончательно и твердо провозгласил, что «этим мнимым сущностям может быть приписано объективное бытие»31. Гаусс, конечно, понимал, что мнимым числам не найдется места на числовой оси, а поэтому он попросту поместил их на перпендикулярную ось, которую провел через нулевую точку основной оси, построив таким образом декартову систему координат. В этой системе все действительные числа располагаются на действительной оси, а все мнимые числа — на мнимой оси (рис. 6-17называется мнимой единицей и обозначается символомi. А поскольку любой квадратный корень отрицательного числа всегда может быть представлен как ==i, то все мнимые числа можно расположить на мнимой оси как кратные »'.
Таким остроумным способом Гаусс создал прибежище не только для мнимых чисел, но и для всех возможных комбинаций действительных и мнимых чисел, например, (2 + i), (3 — i) и т. п. Такие комбинации получили название комплексных чисел; они представлены точками на плоскости, которая называется комплексной плоскостью и образована действительной и мнимой осями. В общем случае любое комплексное число можно записать в виде
z = х + iy,
где х — действительная часть, а у — мнимая часть.
Введя это определение, Гаусс создал специальную алгебру комплексных чисел и разработал множество фундаментальных идей в области функций комплексного переменного. В конце концов это привело к появлению целого раздела математики, известного как комплексный анализ, который выделяется огромным диапазоном применений в самых разнообразных областях науки.
Рис. 6-17. Комплексная плоскость
- Паутина
- Часть I. Культурный контекст
- Часть I культурный контекст
- Глава 1 Глубокая экология: новая парадигма
- Кризис представлений
- Сдвиг парадигмы
- Глубокая экология
- Социальная экология и экофеминизм
- Новые ценности
- Сдвиг от физики к наукам о жизни
- Часть II расцвет системного мышления
- Глава 2
- От частей к целому
- Вещество и форма
- Картезианский механицизм
- Движение романтиков
- Витализм
- Организменная биология
- Системное мышление
- Квантовая физика
- Гештальт-психология
- Экология
- Глава 3 теории систем
- Критерии системного мышления
- Процессуальное мышление
- Тектология
- Глава 4 логика разума
- Кибернетика
- Обратная связь
- Теория информации
- Кибернетика мозга
- Компьютерная модель обучения
- Часть III
- Расцвет молекулярной биологии
- Сети — паттерны жизни
- Появление концепции самоорганизации
- Диссипативные структуры
- Теория лазеров
- Гиперциклы
- Автопоэз — организация живого
- Гайя — живая Земля
- Глава 6 Математика сложных систем
- Лицом к лицу со сложностью
- Нелинейность
- Обратная связь и итерации
- Пуанкаре и следы хаоса
- Траектории в абстрактных пространствах
- Странные аттракторы
- «Эффект бабочки»
- От количества к качеству
- Фрактальная геометрия
- Математика сложных систем
- Комплексные числа
- Паттерны внутри паттернов
- Часть IV
- Три ключевых критерия
- Паттерн организации
- Структура
- Жизненный процесс
- Автопоэз — паттерн жизни
- Диссипативная структура — структура живых систем
- Обучение — процесс жизни
- Глава 8 диссипативные структуры Структура и изменение
- Неравновесные состояния и нелинейность
- Стрела времени
- Порядок и беспорядок
- Точки неустойчивости
- Новый диалог с природой
- Глава 9 Самосозидание Клеточные автоматы
- Имитация автопоэзных сетей
- Двоичные сети
- У границы хаоса
- Жизнь в ее минимальной форме
- Организмы и сообщества
- Автопоэз в социальной сфере
- Система Гайи
- Вселенная в целом
- Структурное сопряжение
- Развитие и эволюция
- Глава 10 Раскрытие жизни
- Дарвинизм и неодарвинизм
- Системный взгляд на эволюцию
- Направления творчества
- Эволюция через симбиоз
- Эпохи жизни
- Происхождение жизни
- Как сплеталась бактериальная паутина
- Кислородный кризис
- Ядерная клетка
- Эволюция растений и животных
- Завоевание суши
- Забота о молодом поколении
- Глава 11 Сотворение мира
- Когнитивная наука
- Теория Сантьяго
- Не отображение, не информация
- Матурана и Бэйтсон
- Пересмотр компьютерной модели
- Когнитивная иммунология
- Психосоматическая сеть
- Глава 12 Знать о своем знании
- Язык и общение
- Человеческое состояние
- Эпилог. Экологическая грамотность
- Приложение: Возвращаясь к Бэйтсону