2. Изоляционные конструкции теплопроводов. Методика их теплового расчета. Определение тепловых потерь участка тепловой сети и падения температур теплоносителя по их длине.
Прокладка может быть наземной и подземной. Наземные теплопроводы разрешается прокладывать только в малонаселенной местности, либо по территории промышленного предприятия. Трубопроводы прокладываются по низким опорам, либо на мачтах, эстакадах и т.п. Не допускается прокладка по фасаду здания.
Подземная прокладка может быть канальная или бесканальная. Каналы могут быть проходные, полупроходные и непроходные. Проходные – при большом скоплении коммуникаций. Размеры канала - из условия свободного прохода человека. Полупроходные сооружаются когда трубопроводы требуют постоянного наблюдения, а сооружение проходных каналов экономически нецелесообразно. Размеры полупроходных каналов выбираются из условия прохода человека в полусогнутом состоянии (hв свету1.4м).
Проходные и полупроходные каналы должны быть оснащены системой вентиляции, поддерживающей температуру воздуха в канале не выше 500С, иметь освещение (u<30В), иметь устройство для отвода дренажных вод, через каждые 200 метров должны быть люки.
Непроходные каналы – из готовых железобетонных конструкций. Размер канала зависит от диаметра прокладываемого трубопровода. В местах скопления арматуры делаются теплофикационные колодцы, павильоны, камеры.
Прокладка бесканальная может быть в литых, шамотных и засыпных конструкциях.
Трубопроводы, проложенные под землей, находятся в условиях, способствующих коррозии. Для защиты трубопроводов от влаги нужна гидроизоляция трубопровода (на сам трубопровод): покрытие гидрозолом, эмалирование, нанесение пленочных покрытий.
Для защиты от увлажнения на поверхность тепловой изоляции обязательно накладывается покрывной слой.
Для снижения уровня грунтовых вод делается попутный дренаж (с одной или двух сторон трубопровода укладываются керамические трубы d>250 мм через каждые 40 метров сооружают колодцы для прочистки дренажа).
Для защиты от блуждающих токов используют:
Катодную защиту. В грунт закладывают электроды и подают напряжение.
Электрическое секционирование трубопроводов. В этом случае элементы трубопроводов соединяются с использованием фланцев между которыми закладывают электроизоляционный материал.
Увеличение электрического сопротивления. На переходе рельсы – грунт (укладка рельсов на слой гравия), увеличение электросопротивления грунта (спец. добавки в почву), применение электроизоляционных покровных материалов, прокладка труба в трубе.
В задачу теплового расчета изоляционных конструкций входит решение следующих вопросов:
Определение тепловых потерь изолированного устройства при заданной изоляционной конструкции;
Определение толщины изоляции при заданных или допустимых тепловых потерях устройства;
Определение толщины изоляции по заданной температуре ее поверхности;
Расчет температурного поля заданной изоляционной конструкции, т.е. определение температуры ее поверхности или промежуточных слоев;
Расчет при заданной изоляционной конструкции падения температуры теплоносителя во времени или вдоль теплопровода;
Определение количества выпадающего конденсата при транспортировании насыщенного пара.
Потери теплоты изолированным оборудованием и трубопроводами
Для цилиндрических аппаратов диаметром менее 2 м и трубопроводов тепловые потери составят
, (4.2)
где l – длина аппарата (трубопровода), м.
Суммарные термические сопротивления для плоской поверхности, цилиндрического сосуда, трубопровода определяются по соответствующим формулам из курса «Теплопередачи» [3].
Для изолированного трубопровода общее термическое сопротивление определяется по формуле
R = RВ + RТР + RИЗ + RН, (4.3)
где RВ – термическое сопротивление внутренней поверхности трубы;
RТР и RИЗ – термические сопротивления стенки трубы и слоя изоляции;
RН – термическое сопротивление наружной поверхности изоляции.
Обычно RВ и RТР вследствие их малого значения не учитывают.
Термическое сопротивление слоя изоляции определяется по формуле
, (4.4)
где ИЗ – коэффициент теплопроводности изоляции, Вт/(м. К);
и– наружный и внутренний диаметры изоляции, м.
Исходя из различных допустимых температур, для применяемых изоляционных материалов или из экономических соображений с целью частичной замены дорогих материалов изоляции более дешевыми, тепловую изоляцию выполняют многослойной. Термическое сопротивление цилиндрической изоляции увеличивается с увеличением отношения ее наружного диаметра к внутреннему. Поэтому в многослойной изоляции первые слои целесообразно укладывать из материала, имеющего более низкую теплопроводность, что приводит к наиболее эффективному использованию изоляционных материалов [1].
Термическое сопротивление наружной поверхности изоляции вычисляется по формуле
, (4.5)
где Н – коэффициент теплоотдачи трубопровода, Вт/(м2. К);
Коэффициент теплоотдачи от горизонтальной трубы к воздуху при естественной конвекции, можно определить по формуле Нуссельта
. (4.6)
При вынужденной конвекции воздуха коэффициент теплоотдачи
, (4.7)
где – скорость движения воздуха, м/с.
Формула (4.7) действительна при 1 м/с и d 0,3 м.
Для приближенных расчетов коэффициента теплоотдачи Н, когда температура поверхности неизвестна, может быть рекомендована формула
. (4.8)
Тепловые потери теплопроводов зависят от способа прокладки труб, применяемой изоляции, а также от наличия соседних теплопроводов (при подземной прокладке).
Общие тепловые потери сети складываются из линейных по длине трассы и местных потерь теплоты в фасонных частях, опорных конструкциях, арматуре, фланцах, и т.д.
. (4.9)
Линейные тепловые потери
, (4.10)
где q– удельные тепловые потери трубопровода по длине, Вт/м;
l – длина трубопровода, м.
Местные тепловые потери принято в приближенных расчетах выражать через эквивалентную длину теплопровода, то ест
, (4.11)
где lЭ – эквивалентная длина трубопровода, м.
Следовательно,
, (4.12)
где – коэффициент, учитывающий дополнительные (местные) потери теплоты. В практических расчетах можно принимать=0,2 0,3.
Для оценки эффективности теплоизоляционных конструкций принято пользоваться коэффициентом эффективности изоляции
, (4.13)
где QН и QИ – тепловые потери неизолированной и изолированной труб.
Для современных изоляционных конструкций теплопроводов
и = 0,850,95.
- 1. Стратегия развития отечественной энергетики.
- 2. Методы определения потребностей промышленных предприятий в теплоте пара и горячей воды.
- 3. Выбор числа и мощности трансформаторов на подстанции. Нагрузочная способность.
- 1. Нормативно-правовая и нормативно-техническая база энергосбережения.
- 2. Системы отопления, вентиляции, горячего водоснабжения и пароснабжения предприятий. Их назначение. Режимы работы. Требуемые параметры тепла.
- 2.5. Паровые системы теплоснабжения
- 3. Выбор электрических аппаратов, изоляторов, электрических проводов по условиям рабочего (нормального) режима.
- 1. Энергетические обследования и энергоаудит объектов теплоэнергетики и теплотехнологий: задачи, виды, нормативная база.
- 2. Суточные и сменные графики теплопотребления. Методика определения максимальных, средних и годовых потребностей в теплоте каждым типом потребителей.
- 3. Выбор электрических аппаратов.
- 1. Двухобмоточные трансформаторы, особенности, схемы замещения.
- 2. Методы регулирования отпуска теплоты из систем централизованного теплоснабжения.
- 3. Энергосбережение в котельных.
- 1. Защита линий электрических сетей от токов коротких замыканий.
- 2. Изоляционные конструкции теплопроводов. Методика их теплового расчета. Определение тепловых потерь участка тепловой сети и падения температур теплоносителя по их длине.
- 3. Сушильные установки: назначение, устройство и принцип работы.
- 1. Защита от атмосферного электричества сельскохозяйственных предприятий.
- 2. Котельные - основной источник генерации теплоты в системах теплоснабжения. Производственные и отопительные котельные. Их назначение и области рационального использования.
- 3. Теплообменные аппараты: назначение, классификация и принцип работы.
- 1. Классификация, свойства и характеристики теплоносителей.
- 2. Классификация и параметры паровых и водогрейных котельных. Принцип выбора основного и вспомогательного оборудования.
- 3. Кабельные линии, конструкции, преимущества.
- 1. Магистральные и радиальные схемы электроснабжения сельскохозяйственных предприятий.
- Энергетические, экологические и экономические показатели котельных.
- 3. Как проводится консервация котла и выполняется защита от стояночной коррозии?
- 1. Проектирование проводок в производственных и общественных зданиях.
- 2. Назначение и классификация тэц, используемых в системах теплоснабжения. Принципиальные тепловые схемы тэц.
- 3. Виды и краткая характеристика потерь энергии и ресурсов в тепловых сетях.
- 1. Приемники электрической энергии, их основные характеристики.
- 2. Коэффициент теплофикации и определение его оптимального значения. Использование пиковых водогрейных котлов.
- 3. Энергосбережение на тэц промышленных предприятий.
- 1. Закон Фурье; коэффициент теплопроводности. Термическое сопротивление теплопроводности.
- 2. Вторичные энергоресурсы промпредприятий, используемые для генерации теплоты. Их количество, параметры, доля полезного использования в системах теплоснабжения.
- 3. Выбор сечения проводниковой арматуры (проводов, кабелей и шин) в электрических сетях.
- 1. Теплопроводность через плоские, цилиндрические, 1-слойные и многослойные стенки.
- 2. Компрессорные машины. Назначение, область применения.
- 3. Воздушные линии с расщепленными фазами.
- 1. Теплопередача через плоские и цилиндрические стенки. Термическое сопротивление теплопередачи через плоские и цилиндрические стенки. Коэффициент теплопередачи; интенсификация теплопередачи.
- Цилиндр стенки
- 2. Детандер. Классификация, назначение, схема поршневого детандера.
- 3. Виды электрических сетей.
- 1. Лучистый теплообмен; законы Планка, смещения Вина, Стефана-Больцмана. Степень черноты тела; закон Кирхгофа и следствие из него.
- 2. Рабочий процесс газотурбинных установок (гту).
- 3. Надежность электроснабжения сельских потребителей.
- 1. Теплообменные аппараты. Уравнения теплового баланса и теплопередачи; средняя разность температур между теплоносителями. Расчет прямоточных и противоточных теплообменников.
- 12.5.Конструкторский и поверочный расчёт теплообменных аппаратов
- 2. Классификация газотурбинных установок.
- 3. Холодильные установки: назначение, устройство и принцип работы.
- 1. Режим работы сети электроснабжения с глухозаземленной нейтралью с напряжением до 1000в
- 2. Паровые турбины и их классификация.
- 3. Ректификационные установки: назначение, устройство и принцип работы.
- 1. Свободная и вынужденная конвекции; физические свойства жидкостей. Числа (критерии) подобия конвективного теплообмена.
- 2. Назначение, роль и место тепловых двигателей и нагнетателей.
- 3. Автоматизация и дистанционные управления – как средство повышения безопасности труда.
- 1. Параметры состояния газа. Уравнение состояния идеального газа. Первый закон термодинамики. Основные процессы идеального газа.
- 2. Абсорбционные установки: назначение, устройство и принцип работы.
- 3. Технические средства безопасности, виды и защита работающих.
- 1. Различия между идеальным газом и реальными газами. Фазовые переходы. Основные процессы с водяным паром. Использование водяного пара в технике.
- 2. Выпарные аппараты: назначение, устройство и принцип работы.
- 3. Методы анализа травматизма и заболеваемости. Их показатели и прогнозирование.
- 1. Газовые смеси. Влажный воздух и его параметры. Изображение на h-d диаграмме процессов сушки в конвективной сушилке и кондиционирования воздуха.
- 2. Качество электрической энергии.
- 3. Требования безопасности к конструкции и эксплуатации сосудов, работающих под давлением.
- 1. Мероприятия по снижению потерь мощности и электроэнергии.
- 2. Равновесие капельной жидкости, движущейся прямолинейно и вращающейся вокруг вертикальной оси.
- 3.8. Равномерное вращение сосуда с жидкостью
- 3. Требования безопасности к конструкции и эксплуатации теплотехнического оборудования.
- 1. Построение годового графика активной мощности.
- 2. Теория физического подобия. Три теоремы теории подобия. Критерии гидродинамического подобия.
- 3. Регенеративные аппараты: назначение, устройство и принцип работы.
- 1. Регулирование напряжения в электрических сетях.
- 2. Виды и образование скачков уплотнений. Уравнения скачков уплотнений.
- 3. Рекуперативные аппараты: назначение, устройство и принцип работы.
- 1. Общие принципы энергосбережения в зданиях и сооружениях.
- 1 Бытовое энергосбережение
- 2 Структура расхода тепловой и электрической энергии зданиями
- 3 Тепловая изоляция зданий и сооружений
- 4 Совершенствование теплоснабжения. Тепловая изоляция трубопроводов.
- 5 Изоляционные характеристики остекления и стеклопакеты
- 2. Уравнение Бернулли для элементарной струйки идеальной жидкости. В чем состоит геометрический и энергетический смысл уравнения Бернулли.
- 3. Назовите основные задачи обслуживания паровых и водогрейных котлов.
- 1. Учет энергоресурсов: принципы и требования, предъявляемые к приборам учета тепловой и электрической энергии.
- 2. Поясните основные характеристики газовых потоков: число Маха, коэффициент скорости. Безразмерную скорость.
- 3. Назовите перечень работ выполняемых во время текущего и капитального ремонтов котельных агрегатов.
- 1. Смесительные аппараты: назначение, устройство и принцип работы.
- 2. Потери мощности и электрической энергии в системах электроснабжения.
- 3. Назовите порядок выполнения планового останова котельного агрегата.