5. Внутренний фотоэффект
В кристаллических полупроводниках и некоторых диэлектриках наблюдается внутренний фотоэффект, состоящий в том, что под действием света увеличивается электропроводность этих веществ за счет возрастания в них числа свободных носителей тока - электронов проводимости и дырок.
По квантовым представлениям электроны могут находиться в атоме на определенном, разрешенном, энергетическом уровне. Под влиянием различных физических факторов электрон может переходить с одного разрешенного уровня на другой, но не может находиться на каком-либо промежуточном уровне - запрещенном уровне.
По принципу Паули на одном энергетическом уровне в изолированном атоме могут находиться не более двух электронов с одинаковым набором 4-х квантовых чисел. При сближении N изолированных атомов энергетический уровень расщепляется на N близких по величине энергетических уровней, на каждом из которых может находиться не более двух электронов.
Совокупность этих уровней образует полосу, которую называют энергетической з о н о й. Энергетические зоны отделяют друг от друга области, в которых в силу квантовых законов электроны находиться не могут. Эти области называют з а п р е щ е н н ы м и зонами. Если на каждом разрешенном уровне находится два электрона, то зона называется з а п о л н е н н о й.
Целиком заполненные зоны в кристаллах называются в а л е н т н ы м и зонами, частично заполненные и пустые - называются зонами п р о в о д и м о с т и.
Следует знать, что энергетическая зона не имеет никаких пространственных размеров, а представляет собой понятие, отражающее тот факт, что тот или иной электрон кристалла может обладать энергиями, заключенными в определенных пределах. Этими пределами являются нижняя и верхняя граница зоны. В фразе "ширина запретной зоны" под словом "ширина" следует понимать не обычное геометрическое расстояние, а лишь то, что численное значение энергии электрона, находящегося на данном уровне, отличается от энергии электрона, находящегося на другом уровне, на Е. Наиболее близкие к ядру электроны крепко связаны с ядрами и не принимают участия в проводимости. Электропроводимость возникает лишь за счет валентных электронов зоны проводимости. Структура спектра валентных электронов для металлов и полупроводников различна.
У металлов между зоной заполненной и зоной проводимости нет запретных уровней и электрон заполненной зоны имеет возможность перейти на свободные уровни зоны проводимости, рис. 3-а. У полупроводников энергетический спектр состоит из заполненной зоны разрешенных уровней, запрещенной зоны и зоны проводимости, рис. 3-б. Ширина запретной зоны определяет величину энергии E, которую нужно дополнительно сообщить электрону, чтобы перевести его из заполненной зоны в зону проводимости. Эту энергию называют энергией активации и выражают в электронвольтах. Полупроводник будет электропроводным, если электрон из заполненной зоны перейдет в зону проводимости. Отсюда явление внутреннего фотоэффекта часто называют фотопроводимостью.
Механизм фотопроводимости объясняется следующим образом. При освещении поверхности полупроводника поглощенный фотон отдает свою энергию валентным электронам.
Если энергия фотона больше ширины запрещенной зоны, то электрон переходит в зону проводимости и становится электроном проводимости, а в заполненной зоне образуется свободное место, пустой уровень, получивший название "дырка". Образовавшаяся дырка может быть заполнена одним из ближайших соседних электронов, но тогда освободится место, которое только что занимал электрон, т.е. появится новая дырка и т.д. В возникшем процессе электрон будет перемещаться против направления электрического поля, а свободное место, заполняемое электронами, дырка, перемещается им навстречу - по направлению поля. В электрических и магнитных полях дырка ведет себя аналогично положительному заряду, величина которого равна заряду электрона. Таким образом, один поглощенный фотон освобождает пару "электрон-дырка" и освещение полупроводника увеличивает количество носителей тока, следовательно, увеличивает ток при неизменном напряжении, что эквивалентно уменьшению сопротивления.
При освещении светом для которого h < E, фотоэффекта не будет.
Частота кр , определяемая из равенства h кр = E, является красной границей внутреннего фотоэффекта.
- Кафедра физики и высшей математики
- Лабораторная работа № 23
- Краткая теория.
- I. Природа света
- Основные понятия и закономерности волнового процесса.
- 3. Интерференция света.
- 4. Цвета тонких пленок
- 5. Полосы равной толщины. Кольца Ньютона.
- Рисунки к лабораторной работе №23
- 2. Принцип Гюйгенса
- Принцип Гюйгенса - Френеля
- 4. Метод зон Френеля
- 5. Дифракция от щели в параллельных лучах
- 6. Дифракционная решетка
- Часть I
- Часть II
- Контрольные вопросы:
- Лабораторная работа № 25
- Основные определения
- Поляризация при отражении и преломлении
- Поляризация при двойном лучепреломлением.
- Поляризационная призма Николя.
- Закон Малюса
- Порядок выполнения работы.
- Рисунки к лабораторной работе №25
- Контрольные вопросы.
- Описание установки и порядок выполнения работы.
- Рисунки к лабораторной работе № 25 а
- 2. Дисперсия света
- 3. Сериальные формулы
- 4. Ядерная модель строения атома по Резерфорду
- 5. Затруднения теории Резерфорда
- 6. Понятие о квантах и постоянная Планка
- Постулаты Бора
- Волны де Бройля
- 9. Линейчатые спектры по теории Бора
- Энергетические уровни в атоме
- II. Вывод расчетной формулы
- III. Описание установки и порядок выполнения работы
- Порядок выполнения работы
- Порядок выполнения работы:
- Контрольные вопросы.
- Изучение работы газового лазера Краткая теория
- Результаты вычисления длины волны
- Порядок выполнения работы
- Рисунки к работе №27
- Контрольные вопросы.
- Определение чувствительности фотоэлемента, исследование светоотдачи электролампы, определение работы выхода и красной границы фотоэффекта.
- 1. Основные понятия
- Внешний фотоэффект, законы Столетова.
- Внешний фотоэффект и волновая теория света
- 4. Уравнение Эйнштейна для внешнего фотоэффекта
- 5. Внутренний фотоэффект
- Типы фотоэлементов
- Работа состоит из 2-х частей:
- Определение чувствительности фотоэлемента.
- Определение удельной мощности электролампы.
- Дозиметрический контроль сред Краткая теория
- 1. Биологическое действие ионизирующего излучения
- 2. Единицы дозиметрии
- Описание установки и порядок выполнения работы.
- Работа выполняется в следующем порядке:
- Определения половинного слоя ослабления гамма-излучения в веществе. Краткая теория.
- 1. Радиоактивность.
- Контрольные вопросы.
- Определение температуры тел с помощью оптического пирометра Краткая теория.
- Описание установки и порядок проведения работы
- Вывод расчетной формулы
- Порядок выполнения работы.
- Обработка результатов измерений
- Расчетная таблица
- Контрольные вопросы:
- «Определение резонансного потенциала атомов гелия и ртути».
- Контрольные вопросы.