49. Мощность и кпд нагнетателей. Совместная работа насоса и сети.
Рабочие органы машины — лопасти, поршни — работают в потоке и увеличивают его энергию. Для проведения этой работы к валу насоса должна непрерывно подводиться энергия от двигателя.
Аналогично понятию удельной полезной работы в гидромашиностроении введены понятия полезной мощности насоса и мощности насоса.
Полезная мощность машины (насоса, вентилятора) — работа, сообщаемая машиной в секунду подаваемой среде, определяется соотношением:
. (6.3.1)
Из формулы следует из представления о работе как о произведении силы на длину пути. При этом машина совершает в секунду полезную работу, сообщаемую подаваемой среде. Делением на 1000 выражают полезную мощность в киловаттах.
. (6.3.2)
В системе МКГСС полезная мощность определяется формулой:
. (6.3.3)
Мощность , подводимую от двигателя на вал насоса (вентилятора), называют мощностью насоса (вентилятора).
Потери энергии, неизбежные в любом рабочем процессе, приводят к неравенству Nп<N. Процесс работы машины тем совершеннее, чем меньше Na отличается от N.
Эффективность использования насосом энергии, к нему подводимой, оценивают КПД насоса — отношением полезной мощности к мощности насоса,
. (6.3.4)
В рабочих условиях КПД зависит от многих факторов: типа, размера и конструкции машины, рода перемещаемой среды, режима работы машины, характеристики сети, на которую машина работает.
Для оценки энергетической эффективности установки в целом, состоящей из машины и двигателя к ней, пользуются КПД установки :
(6.3.5)
где — электрическая мощность, подводимая к двигателю.
Для оценки эффективности компрессоров служат относительные термодинамические КПД.
Совместная работа насоса и трубопроводной системны
Работа насоса, присоединенного к системе водопроводов, находится в зависимости от гидравлических свойств этой системы, называемой сетью. Рассмотрим условия работы машины на примере насосной установки, полагая систему устойчивой.
Первое условие связи насоса с трубопроводной системой следует из уравнения неразрывности и заключается в равенстве массовых подач, проходящих через насос и присоединенные к нему всасывающий и напорный трубопроводы:
(6.3.6)
Для несжимаемой жидкости и поэтому имеет место равенство объемных подач:
. (6.3.7)
Уравнение сохранения энергии с учетом полезной работы, передаваемой потоку насосом,
, (6.3.8)
где —потери напора в трубах
В области развитой турбулентности потери напора подчинены квадратичному закону и поэтому:
. (6.3.9)
Сумма коэффициентов, содержащихся в скобках, с учетом поправки на разницу в подачах и может быть принята постоянной и равной . Тогда
Задавая произвольные значения Q, вычисляем соответствующие значения и наносим на график ряд точек, соединяя которые плавной кривой получаем характеристику сети .
- 2. Основные термодинамические параметры состояния.
- 3.Теплота и работа
- 4.Уравнение состояния идеальных газов.
- 5.Первый закон термодинамики.
- Аналитическое выражение первого закона термодинамики.
- Энтальпия.
- Теплоемкость газов. Энтропия.
- 6. Второй закон термодинамики.
- 7. Термодинамические процессы идеальных газов (изобарный, изотермический, изохорный)
- 8. Термодинамические процессы идеальных газов (политропные, адиабатные)
- 9. Термодинамический кпд и холодильный коэффициент циклов.
- 10. Прямой обратимый цикл Карно.
- 11. Обратный обратимый цикл Карно.
- 12. Циклы паротурбинных установок. Циклы Ренкина на насыщенном и перегретом паре.
- 13. Классификация холодильных установок, хладагенты и требования к ним.
- 14. Основные виды переноса теплоты
- 15. Конвективный теплообмен. Виды движения теплоносителей.
- 16. Классификация теплообменных аппаратов. Теплоносители.
- 17. Расчет рекуперативных Теплообменных аппаратов.
- 18. Типы тепловых электростанций. Классификация.
- 19. Технологический процесс преобразования химической энергии топлива в электроэнергию на тэс.
- 20. Классификация атомных реакторов
- 21. Устройство о ядерных реакторов различного типа
- 22. Ресурсы, потребляемые аэс, ее продукция, отходы производства
- 23. Технологические схемы производства электроэнергии на аэс.
- 24. Паровые турбины. Устройство паровой турбины
- 25. Проточная часть и принцип действия турбины
- 26.Типы паровых турбин и область их использования
- 27. Основные технические требования к паровым турбинам и их характеристики
- 29. Гту с изохорным подводом теплоты. Термодинамический кпд и работа цикла с изохорным подводом теплоты. Достоинства и недостатки гту.
- 30. Пгу. Их классификация. Достоинства и недостатки.
- 31. Котельные установки. Общие понятия и определения
- 32. Классификация котельных установок.
- 33. Каркас и обмуровка котла.
- 34. Тепловой и эксергетический балансы котла. Составляющие приходной части теплового баланса.
- 35. Общее уравнение теплового баланса ку. Составляющие расходной части теплового баланса.
- 36. Схемы подачи воздуха и удаления продуктов сгорания
- 37. Естественная и искусственная тяга. Принцип работы дымовой трубы.
- 38. Паросепарирующие устройства котлов
- 39. Пароперегреватели. Назначение, устройство, виды.
- 40. Водяные экономайзеры ку. Назначение, конструкция, виды
- 41. Воздухоподогреватели ку. Назначение, конструкция, виды
- 42. Топливо, состав и технические характеристики топлива Понятие условного топлива, высшей и низшей теплоты сгорания
- 43. Классификация систем теплоснабжения и тепловых нагрузок
- 44. Тепловые сети городов
- 45. Теплоэлектроцентрали. Преимущества раздельной и комбинированной выработки электроэнергии и тепла
- 47. Классификация нагнетателей. Области применения
- 48. Производительность, напор и давление, создаваемые нагнетателем
- 49. Мощность и кпд нагнетателей. Совместная работа насоса и сети.
- 50. Классификация двигателей внутреннего сгорания.
- 52. Основные теплоносители теплообменных аппаратов
- 54. Устройство двс. История развития и параметры работы двс Отличия реальной и идеальной индикаторных диаграмм двс.
- 55. Нетрадиционные и возобновляемые источники энергии
- 56. Прямое преобразование солнечной энергии. Солнечные водоподогреватели.
- 57. Подогреватели воздуха. Солнечные коллекторы.
- 58. Преобразование солнечной радиации в электрический ток
- 59. Гидроэнергетика. Основные принципы использования энергии воды. Устройство русловой гэс
- 60. Приливные электростанции
- 61.Ветрогенераторы. Возможность применения. Устройство и категории ветрогенераторов.
- 62. Типы ветрогенераторов. Установки с горизонтальной осью вращения. Преимущества и недостатки.
- 63. Типы ветрогенераторов. Установки с вертикальной осью вращения. Преимущества и недостатки.
- 64. Водородная энергетика
- Принцип работы топливного элемента: