logo
ПЕЧАТАТЬ!!!

59. Гидроэнергетика. Основные принципы использования энергии воды. Устройство русловой гэс

Энергетическая программа РБ до 2010 года предусматривает в качестве основных направлений развития малой гидроэнергетики:

- сооружение малых ГЭС на промышленных сбросах;

- сооружение новых малых ГЭС на водохранилищах неэнергетического назначения;

- восстановление ранее существовавших малых ГЭС.

Основным рабочим органом ГЭС, непосредственно преобразующим энергию движения воды в кинетическую энергию своего вращения, является гидротурбина.

Гидротурбины бывают двух типов:

- активные;

- реактивные.

Термин "гидроэнергетика" определяет область энергетики, использующей энергию движущейся воды, как правило, рек. Эта энергия преобразуется или в механическую, или чаще всего в электрическую. Помимо гидроэнергетики водными источниками энергии являются морские волны и приливы.

Гидроэнергетика является наиболее развитой областью энергетики на возобновляемых ресурсах. Важно отметить, что в конечном итоге возобновляемость гидроэнергетических ресурсов также обеспечивается энергией Солнца, Действительно, реки представляют собой пото­ки воды, движущиеся под действием силы тяжести с более высоких на поверхности Земли мест в более низкие, и в конце концов впадают в Мировой океан. Под действием солнечного излучения вода испаряется с поверхности Ми­рового океана, пар ее поднимается в верхние слои атмосферы, конденсируется в облака и выпадает в виде дождя, пополняя истощаемые истоки рек. Таким образом, используемая энергия рек является преобразованной в механическую энергией Солнца.

Часто бывает, что в силу тех или иных изменений атмосферных условий этот кругооборот нарушается, реки мелеют или даже полностью высыхают. Другим крайним случаем является нарушение этого кругооборота, приводящее к наводнениям.

Для исключения этих обстоятельств на реках перед гидроэлектростанциями строятся плотины, формируются водохранилища, с помощью которых регулируется постоянный напор и расход воды. Гидроэлектростанции и их оборудование используются очень долго, турбины, например, — около 50 лет. Это объясняется условиями их эксплуатации: равномерный режим работы при отсутствии экстремальных температурных и других нагрузок. Вследствие этого стоимость вырабатываемой на ГЭС электро­энергии низка (примерно 4 цента США за 1 кВт-ч) и многие из них работают с высоким экономическим эффектом. Например, Норве­гия производит 90 % электроэнергии на ГЭС. Вырабатываемую ГЭС энергию очень легко регулировать, что важно при ее использовании в энергосистемах с большими колебаниями нагрузки,

С самого начала (примерно с 80-х годов прошлого столетия) для производства электроэнергии в гидроэнергетике использовались в основном гидравлические турбины. Их суммарная мощность возрастает сейчас во всем мире примерно на 5 % в год, т. е. удваивается каждые 15 лет. В 1980 г. мощность всех ГЭС составляла примерно 500 000 МВт и большая часть станций имела мощность более 10 МВт.

Оценка мощности водного потока. Пусть Qобъем воды, поступающей в рабочий орган гидроэнергетической установки в единицу време­ни (расход, измеряемый в м3/с), Н — высота падения жидкости (напор, измеряемый в метрах), р — плотность воды (кг/м3), g — ускорение си­лы тяжести (9,8 м/с2). Тогда мощность водного потока Р определяется по формуле

P=QpgH. (8.75.1)

Основным рабочим органом гидроэнергети­ческой установки, непосредственно преобразующим энергию движущейся воды в кинетичес­кую энергию своего вращения, является гидро­турбина. Коэффициент полезного действия гидротурбины составляет до 90%. Гидротурбины бывают двух типов:

активные гидротурбины, рабочее колесо которых вращается в воздухе натекающим на его лопасти потоком;

реактивные гидротурбины, рабочее колесо которых полностью погружено в воду и вращается в основном за счет разности давлений пе­ред и за колесом).

В активной гидротурбине водный поток перед турбиной с помощью водовода и сопла формируется в струю, которая направляется на ковши, расположенные на ободе колеса, приводя его во вращение. Величина КПД реальных турбин колеблется от 50 % для небольших агрегатов до 90 % для больших энергоустановок.

Конструкция рабочего колеса реактивной гидротурбины такова, что поток воды воздействует на все лопасти турбины одновременно и практически постоянно. Наиболее компактной конструкцией реактивной гидротурбины является пропеллерная с преимущественно осевым направлением потока в рабочем колесе. Направляющий аппарат на входе турбины несколько закручивает поступающий на рабочее колесо поток, увеличивая тем самым КПД турбины.

Русловые и приплотинные ГЭС строят и на равнинных многоводных реках и на горных реках, в узких сжатых долинах.

В состав сооружений русловой ГЭС, кроме плотины, входят здание ГЭС и водосбросные сооружения. Состав гидротехнических сооружений зависит от высоты напора и установленной мощности. У русловой ГЭС здание с размещенными в нём гидроагрегатами служит продолжением плотины и вместе с ней создаёт напорный фронт. При этом с одной стороны к зданию ГЭС примыкает верхний бьеф, а с другой — нижний бьеф. Подводящие спиральные камеры гидротурбин своими входными сечениями закладываются под уровнем верхнего бьефа, выходные же сечения отсасывающих труб погружены под уровнем нижнего бьефа.

В соответствии с назначением гидроузла в его состав могут входить судоходные шлюзы или судоподъёмник, рыбопропускные сооружения, водозаборные сооружения для ирригации и водоснабже­ния. В русловых ГЭС иногда единственным сооружением, пропускающим воду, является здание ГЭС. В этих случаях полезно используемая вода последовательно проходит входное сечение с мусорозадерживающими решётками, спиральную камеру, гидротурбину, отсасывающую трубу, а по специальным водоводам между сосед­ними турбинными камерами произво­дится сброс паводковых расходов реки. Для русловых ГЭС характерны напоры до 30—40 м, к простейшим русловым ГЭС относятся также ранее строившиеся сельские ГЭС небольшой мощности. На крупных равнинных реках основное русло перекрывается земляной плотиной, к которой примыкает бетонная водосливная плотина и сооружается здание ГЭС. Такая компоновка типична для многих отечественных ГЭС на больших равнинных реках. Волжская ГЭС им. 22-го съезда КПСС— наиболее крупная среди станций руслового типа.

При более высоких напорах оказывается нецелесообразным передавать на здание ГЭС гидростатичное давление воды. В этом случае применяется тип плотиной ГЭС, у которой напорный фронт на всём протяжении перекрывается плотиной, а здание ГЭС располагается за плотиной, примыкает к нижнему бьефу. В состав гидравлической трассы между верхним и нижним бьефом ГЭС тако­го типа входят глубинный водоприёмник с мусорозадерживающей решёткой, тур­бинный водовод, спиральная камера, гидротурбина, отсасывающая труба. В качестве дополнительных сооружений в состав узла могут входить судоходные сооружения и рыбоходы, а также дополнительные водо­сбросы. Примером подобного типа станций на многоводной реке служит Братская ГЭС на реке Ангара.

Несмотря на снижение доли ГЭС в общей выработке, абсолютные значения производства электроэнергии и мощности ГЭС непрерывно растут вследствие строительства новых крупных электростанций. В 1969 в мире насчитывалось свыше 50 действующих и строящихся ГЭС единичной мощностью 1000 Мвт и выше, причём 16 из них — на территории бывшего Советского Союза.

Важнейшая особенность гидроэнергетических ресурсов по сравнению с топливно-энергетическими ресурсами — их непрерывная возобновляемость. Отсутствие потребности в топливе для ГЭС определяет низкую себестоимость вырабатываемой на ГЭС электроэнергии. Поэтому сооружению ГЭС, несмотря на значительные удельные капиталовложения на 1 квт установленной мощности и продолжительные сроки строительства, придавалось и придаётся боль­шое значение, особенно когда это связано с размещением электроёмких производств.