6.2.7. Пористый углерод
Различные виды пористого углерода широко используются в технике, примером чего является активированный уголь и вспененный графит. Плотность таких материалов может изменяться в пределах от 0.15 до 0.7 г/см3.
Среди методов получения мезопористых углеродных материалов – пиролиз гелей органических веществ с последующей карбонизацией, матричные методы (разд. 5.6), вспенивание пека, хлорирование карбидов металлов (разд. 3.4) и другие.
Для пиролиза обычно используют смесь резорцинола с формальдегидом и добавками катализатора, хотя описано применение и других предшественников.
Вспенивание пека сопровождается термической стабилизацией при 1000 оС, причём для регулирования размера пор в исходный пек иногда вводят углеродные нановолокна.
Пиролизом углеводородов на наночастицах MgO получен полый пористый углерод в виде частиц размером до 10 нм (рис. 135).
Путём сублимационной сушки водной дисперсии углеродных нанотрубок или сушки в сверхкритическом СО2 выделены твёрдые аэрогели нанотрубок. Описан процесс вспенивания концентрированной дисперсии многослойных углеродных нанотрубок с последующим замораживанием, удалением растворителя и пиролизом. Плотность продукта составляла 0.15–0.25 г/см3.
-
Содержание
- Неорганические наноматериалы
- Пористые материалы 176
- Общая характеристика 214
- Глава 1. Введение
- Твердое тело
- Понятие о материалах
- Классификация материалов
- Нанонаука, нанотехнология и наноматериалы
- Построение книги
- Классификация материалов.
- Глава 2. Строение основных материалов
- Монокристаллы
- Основные понятия
- Реальная структура кристаллов
- Влияние размера частиц на их строение
- Изоморфизм и твердые растворы
- Нестехиометрия
- Поликристаллы
- Аморфные тела, стёкла и ситаллы
- Композиты
- Глава 3. Форма и морфология материалов
- Нитевидные наноматериалы
- Пористые материалы
- 3.4. Нитевидные наноматериалы.
- 3.5. Пористые наноматериалы.
- Глава 4. Свойства материалов
- Общая характеристика
- Механические свойства
- 4.3. Термические свойства
- Транспортные свойства
- Оптические свойства
- Магнитные свойства
- Химические свойства
- Биологические свойства
- Другие свойства
- Глава 5. Получение наноматериалов
- 5.1. Общий обзор методов
- 5.2. Физические методы
- Нульмерные (изометрические) материалы
- Пленки и покрытия
- Общая скорость эффузии выражается равенством
- Нитевидные материалы.
- Пористые материалы
- Массивные наноструктурированные материалы
- 5.3. Химические методы
- Нульмерные (изометрические) материалы
- 5.3.2. Пленки и покрытия
- Нитевидные материалы
- 5.3.4. Пористые материалы
- Функциализация наночастиц и пористых материалов
- 5.4. Биологические методы
- Комбинированные методы
- Матричные методы
- Нанолитография
- Самоорганизация и самосборка
- Глава 6. Распространенные и перспективные наноматериалы
- Общий обзор
- Общая характеристика
- Терморасширенный графит
- Нанотрубки и нановолокна
- 6.2.5. Фуллерены
- 6.2.6. Наноалмазы
- 6.2.7. Пористый углерод
- Простые вещества
- Оксидные наноматериалы
- Карбиды и нитриды
- Халькогениды и пниктиды
- Нанокомпозиты
- Стабилизированные дисперсии наночастиц
- 6.8. Наноалмазы.
- 6.11. Стабилизированные дисперсии наночастиц.
- Глава 7. Наноматериалы в энергетике
- Структура энергетики
- Общие применения наноматериалов
- Генерирование энергии. Атомная энергетика
- Генерирование энергии. Топливные элементы.
- Накопление и хранение энергии. «Малая» энергетика
- Потребление энергии. Термоэлектрические генераторы