6.2.5. Фуллерены
Фуллеренами называют класс молекул, состоящих из атомов С и образующих оболочки с 12 пятиугольными кольцами и двумя или более шестиугольными кольцами. Каждый атом С в фуллеренах соединен с тремя соседними атомами, общее число атомов всегда четное. Каждый фуллерен содержит 2(10 + n) атомов углерода, где n – число шестиугольников (n не может быть равно единице).
Существуют фуллерены, построенные из 28, 42, 52, 58, 60, 70, 76, 82, 84, 90, 92, 98, 100 и более атомов С, однако наиболее устойчивы С60 и С70.
Устойчивый изомер С60 (рис. 192 а) содержит 20 шестиугольных и 12
Рис. 192.
пятиугольных колец. Пятиугольники в классическом фуллерене С60 друг с другом не сочленяются и отделены один от другого не более чем одним шестиугольником (правило изолированных пятиугольников). Радиус молекулы С60 равен 0.3512 нм, длина короткой связи С–С (ребро между пяти- и шестиугольником) – 0.1391 нм, длина другой связи (ребро между шестиугольниками) – 0.1455 нм.
Фуллерен С70 (рис. 192 б) содержит 25 шестиугольных и 12 пятиугольных колец.
Фуллерены в кристаллическом состоянии называют фуллеритами. Они образуют молекулярные кристаллические решетки и с изменением температуры испытывают фазовые переходы. 6-33
При частичном замещении атомов С в фуллеренах образуются сферические молекулы гетерофуллеренов, например C59B, C58B2, C57B3, C59B2N, С59NH, С69B, C69N, или гантелеобразные димеры, подобные (C59N)2, C59B∙C60, C59B∙C59N.
Фуллерены способны образовывать экзо- и эндоэдрические соединения. К экзоэдрическим относятся многочисленные соединения, содержащие присоединенные к фуллереновому каркасу атомы, группы атомов и ионы снаружи. Таковы многочисленные фториды фуллеренов, оксиды фуллеренов и гидриды фуллеренов (фуллераны). Полного фторирования или гидрирования фуллеренов с образованием, например, С60F60 или С60Н60 добиться невозможно, поскольку шестичленные кольца сферического каркаса стремятся принять форму «кресла» или «ванны» и делают молекулу неустойчивой.
Фуллерены растворимы в некоторых органических жидкостях. В бензоле, толуоле, фенилхлориде образуют красно-фиолетовые, а в диоксане – желто-коричневые растворы. При этом образуются кристаллосольваты фуллеренов. Известны также сольваты с СHCl3, стиролом, ферроценом и др.
Наиболее изучены химические реакции С60. Они объединяются в несколько групп: восстановление, нуклеофильное присоединение, циклоприсоединение, галогенирование, региохимическое множественное присоединение, гидрирование, присоединение радикалов, окисление и реакции с электрофильными реагентами, образование комплексов переходных металлов. Кроме того, фуллерены способны полимеризоваться и участвовать в реакциях раскрытия колец.
Соединения фуллеренов с металлами называют фуллеридами. Таковы, например, фуллериды щелочных металлов МС60 и М3С60, а также образующиеся при высоких давлениях М4С60, М6С60, МnC70 (n = 1, 4 и 6), Li12C60 и другие.
Интенсивно развивается органическая химия фуллеренов (Трошина*).
Луковичные углеродные структуры (гиперфуллерены, рис. 180) устойчивее фуллеренов. Наименьшая оболочка гиперфуллеренов представляет собой С60, более сложные структуры могут быть описаны формулой С60@C240@C540@C960@C1500, причем разница радиусов соседних оболочек примерно соответствует расстоянию между соседними графеновыми слоями в графите.
Методы получения фуллеренов делятся на две основные группы: возгонка–десублимация графита и пиролиз углеводородов. Возгонка графита требует нагревания др температур выше 2000 К и осуществляется преимущественно электродуговым методом, пиролиз проводят с плазменным активированием процесса или в условиях горения.
В результате электродуговой возгонки расходуется анод и образуется несколько продуктов: плотно спечённый катодный осадок и фуллеренсодержащая сажа, куда переходит до 30–40% возгоняемого углерода. Часть продукта образует паутинообразную сетку между электродами и стенкой реакционной камеры. Разработаны различные варианты электродуговых установок: с горизонтальным и вертикальным расположением электродов, с полым катодом, с псевдоожиженным слоем, с подачей в дугу порошкообразного графита, со сменными электродами. 6-34
Для выделения фуллеренов из первичного продукта используют экстракцию органическими растворителями, для разделения фуллеренов – жидкостную хроматографию.
В небольших количествах фуллерены обнаружены в природе. 6-35
Помимо собственно фуллеренов существуют фуллереноподобные вещества – неорганические соединения в форме замкнутых сферических молекул или сферических многослойных частиц. Логично предполагать, что такие молекулы могут образовывать все вещества, имеющие слоистое строение, хотя выделены и охарактеризованы лишь некоторые представители этого класса молекул. К ним, в частности, относятся NiCl2, TiS2, MoS2 и WS2.
- Неорганические наноматериалы
- Пористые материалы 176
- Общая характеристика 214
- Глава 1. Введение
- Твердое тело
- Понятие о материалах
- Классификация материалов
- Нанонаука, нанотехнология и наноматериалы
- Построение книги
- Классификация материалов.
- Глава 2. Строение основных материалов
- Монокристаллы
- Основные понятия
- Реальная структура кристаллов
- Влияние размера частиц на их строение
- Изоморфизм и твердые растворы
- Нестехиометрия
- Поликристаллы
- Аморфные тела, стёкла и ситаллы
- Композиты
- Глава 3. Форма и морфология материалов
- Нитевидные наноматериалы
- Пористые материалы
- 3.4. Нитевидные наноматериалы.
- 3.5. Пористые наноматериалы.
- Глава 4. Свойства материалов
- Общая характеристика
- Механические свойства
- 4.3. Термические свойства
- Транспортные свойства
- Оптические свойства
- Магнитные свойства
- Химические свойства
- Биологические свойства
- Другие свойства
- Глава 5. Получение наноматериалов
- 5.1. Общий обзор методов
- 5.2. Физические методы
- Нульмерные (изометрические) материалы
- Пленки и покрытия
- Общая скорость эффузии выражается равенством
- Нитевидные материалы.
- Пористые материалы
- Массивные наноструктурированные материалы
- 5.3. Химические методы
- Нульмерные (изометрические) материалы
- 5.3.2. Пленки и покрытия
- Нитевидные материалы
- 5.3.4. Пористые материалы
- Функциализация наночастиц и пористых материалов
- 5.4. Биологические методы
- Комбинированные методы
- Матричные методы
- Нанолитография
- Самоорганизация и самосборка
- Глава 6. Распространенные и перспективные наноматериалы
- Общий обзор
- Общая характеристика
- Терморасширенный графит
- Нанотрубки и нановолокна
- 6.2.5. Фуллерены
- 6.2.6. Наноалмазы
- 6.2.7. Пористый углерод
- Простые вещества
- Оксидные наноматериалы
- Карбиды и нитриды
- Халькогениды и пниктиды
- Нанокомпозиты
- Стабилизированные дисперсии наночастиц
- 6.8. Наноалмазы.
- 6.11. Стабилизированные дисперсии наночастиц.
- Глава 7. Наноматериалы в энергетике
- Структура энергетики
- Общие применения наноматериалов
- Генерирование энергии. Атомная энергетика
- Генерирование энергии. Топливные элементы.
- Накопление и хранение энергии. «Малая» энергетика
- Потребление энергии. Термоэлектрические генераторы