3.Основные виды сил в механике и их природа
Таблица
Сила тяготения (Гравитация) Это взаимод носит универсальный хар-тер, в нем участвуют все виды материи, все объекты природы, элементарные частицы! Общеприн классической (не квантовой) теорией гравитац взаимод явл эйнштейновская общая теория относительности. Гравитация опред движ планет в звездных системах, играет важную роль в процессах, протек в звездах, управляет эволюцией Вселенной, в земных условиях проявляет себя как сила взаимного притяж. Си́ла упр — сила, возник при деформации тела и противодейств этой деформации. В случае упр деформаций явл потенциальной. Сила упр имеет электромагн природу, являясь макроскопич проявл межмолекулярн взаимод. В простейшем случае растяжения/сжатия тела сила упр направл противоположно смещению частиц тела, перпендикулярно поверхности. Природа силы трения - электромагн. причиной её возникн явл силы взаимод между частицами, из которых состоит в-во. Второй причиной возникн силы тр явл шероховатость поверхности. Выступающие части поверхностей задевают друг за друга и препятствуют движению тела. Именно поэтому для движения по гладким (полированным) поверхностям требуется прикладывать меньшую силу, чем для движения по шероховатым.
Особенности сил трения: -возникают при соприкосновении; -действуют вдоль поверхности; -всегда направлены против направления движения тела. Можно выделить три вида сил трения: 1.Трения скольжения (санки) 2.Трения качения (колёса) 3.Трения покоя (для того чтобы сдвинуть с места любое тело, необходимо приложить какую-либо силу) Сила трения покоя – это сила, которая проявляется между соприкасающимися поверхностями тел, неподвижных относительно друг друга.
сухое, когда взаимодействующие твёрдые тела не разделены никакими дополнительными слоями/смазками — очень редко встречающийся на практике случай. Характерная отличительная черта сухого трения — наличие значительной силы трения покоя; Силы сопротивления, возникающие при движении твердого тела в жидкости или газе, называются силами жидкого трения.
4.Виды механической энергии (кинетическая, потенциальная, внутренняя). Закон сохранения энергии. Кинети́ч эне́ргия — энергия механич сист, зависящая от скоростей движ её точек. Часто выделяют кинетич энергию поступат и вращ движения.Ед изм в сист СИ — Джоуль. Более строго, кинетич эн есть разность между полной энерг сист и её эн покоя; т.о, кинетич эн — часть полн эн, обусловл движ. Для абсолютн твёрд тела полную кинетич эн можно записать в виде суммы кинетич энергии поступат и вращат движ:
где: — масса тела — ск центра масс тела — момент инерции тела — угловая скорость тела. Потенц эн - скалярная физ велич, характер способность некоего тела (или мат точки) совершать работу за счет его нахождения в поле действия сил. Др опред: потенц эн — это ф-ция координат, явл слагаемым в лагранжиане системы, и опис взаимод элементов сист. Термин «потенц эн» был введен в XIX веке шотландским инженером и физиком Уильямом Ренкином. Ед изм эн в СИ явл Джоуль. Пот эн принимается равной нулю для некот конфигурации тел в пр-ве, выбор кот опред удобством дальнейших вычисл. Процесс выбора данной конфигурации назыв нормировкой потенц энергии. Корректное опред потенц эн может быть дано только в поле сил, работа кот зависит только от нач и конечного полож тела, но не от траектории его перемещения. Такие силы назыв консервативными. Также потенц эн явя хар-кой взаимод неск тел или тела и поля.Любая физич сист стремится к состоянию с наим потенц энергией. Потенц эн упругой деформации характеризует взаимод между собой частей тела. Потенц эн в поле тяготения Земли вблизи поверхности приближённо выраж ф-лой:
Ep = mgh, где Ep — потенц эн тела, m — масса тела, g — уск своб пад, h — высота полож центра масс тела над произвольно выбранным нулевым уровнем.
Внутренняя энергия складывается в основном из кинетической энергии движения частиц (атомов, молекул, ионов, электронов) и энергии взаимодействия между ними (внутри- и межмолекулярной). На внутреннюю энергию влияет изменение внутреннего состояния системы под действием внешнего поля; во внутреннюю энергию входит, в частности, энергия, связанная с поляризацией диэлектрика во внешнем электрическом поле и намагничиванием парамагнетика во внешнем магнитном поле. Кинетическая энергия системы как целого и потенциальная энергия, обусловленная пространственным расположением системы, во внутреннюю энергию не включаются. В термодинамике определяется лишь изменение внутренней энергии в различных процессах. Поэтому внутреннюю энергию задают с точностью до некоторого постоянного слагаемого, зависящего от энергии, принятой за нуль отсчета. Внутренняя энергия U как функция состояния вводится первым началом термодинамики, согласно которому разность между теплотой Q, переданной системе, и работой W, совершаемой системой, зависит только от начального и конечного состояний системы и не зависит от пути перехода, т.е. представляет изменение фуникции состояния ΔU
где U1 и U2 - внутренняя энергия системы в начальном и конечном состояниях соответственно. Уравнение (1) выражает закон сохранения энергии в применении к термодинамическим процессам, т.е. процессам, в которых происходит передача теплоты. Для циклического процесса, возвращающего систему в начальное состояние, ΔU=0. В изохорных процессах, т.е. процессах при постоянном объеме, система не совершает работы за счет расширения, W=0 и теплота, переданная системе, равна приращению внутренней энергии: Qv=ΔU. Для адиабатических процессов, когда Q=0, ΔU=-W.
Сумма кинетической и потенциальной энергии тел, составляющих замкнутую систему и взаимодействующих между собой посредством сил тяготения и сил упругости, остается неизменной.
Это утверждение выражает закон сохранения энергии в механических процессах. Он является следствием законов Ньютона. Сумму E = Ek + Ep называют полной механической энергией. Закон сохранения механической энергии выполняется только тогда, когда тела в замкнутой системе взаимодействуют между собой консервативными силами, то есть силами, для которых можно ввести понятие потенциальной энергии. Основное содержание закона сохранения энергии заключается не только в установлении факта сохранения полной механической энергии, но и в установлении возможности взаимных превращений кинетической и потенциальной энергии тел в равной количественной мере при взаимодействии тел.
Закон сохранения энергии раскрывает физический смысл понятия работы.
Работа сил тяготения и сил упругости, с одной стороны, равна увеличению кинетической энергии, а с другой стороны, — уменьшению потенциальной энергии тел.
Следовательно, работа равна энергии, превратившейся из одного вида в другой.
Закон сохранения полной механической энергии в процессах с участием сил упругости и гравитационных сил является одним из основных законов механики. Знание этого закона упрощает решение многих задач, имеющих большое значение в практической жизни.
- Материальная точка. Механическое движение. Связь кинематических переменных для простейших видов движения
- 3.Основные виды сил в механике и их природа
- 5. Импульс тела и системы тел. Центр масс. Закон сохранения импульса.
- 7. Понятие об уравнении состояния. Идеальный газ, его основные приближения и уравнение состояния. Обобщенное уравнение состояния системы
- Основное уравнение молекулярно - кинетической теории газа и его роль.
- Изопроцессы в идеальном газе и их графики
- 10.Термодинамический подход. Простейшие термодинамические параметры. Первое начало термодинамики и изопроцессы.
- Математическое выражение первого закона термодинамики для различных процессов
- 11.Тепловые двигатели. Цикл Карно и двигатель Карно.
- 12.Второе начало термодинамики и его статистическая природа.
- Электростатика. Закон Кулона. Силовые линии электрического поля и их свойства. Напряжённость.
- Свойства силовых линий электрического поля
- 14.Напряжённость электрического поля. Потенциал и его связь с напряжённостью
- Энергия взаимодействия электрических зарядов
- 16.Законы Ома в интегральной и дифференциальной форме. Понятие эдс, условие поддержания постоянного тока.
- 17. Энергетика тока, закон Джоуля - Ленца в интегральной и дифференциальной форме. Ток в разных средах.
- 18.Типы соединения проводников. Простейшие электрические цепи. Правила Кирхгофа.
- Резистор
- Последовательное соединение
- Первый закон
- Второй закон
- 19.Магнитное поле и его природа. Индукция и напряжённость. Свойства линий индукции. Магнитное поле прямого тока.
- Вычисление
- 20.Сила Ампера. Сила Лоренца. Движение заряда в магнитном поле.
- Лоренца сила
- Явление электрической и магнитной индукции. Элементарные представления об уравнениях Максвелла.
- Явление магнитной индукции.
- 22.Поведение механической системы в окрестности устойчивого равновесия.
- Устойчивое равновесие
- 23. Простейшие колебательные системы, общие методы определения собственной частоты. Сложение колебаний. Метод векторных диаграмм. Простейшие колебательные системы.
- Пружинный маятник.
- Математический маятник.
- Математический маятник с пружиной.
- Векторная диаграмма
- 24.Затухающие колебания. Вынужденные колебания. Резонанс. Автоколебательные системы.
- Автоколебательные системы
- 25.Упругие волны, их характеристики. Понятие упругой среды. Типы волн в различных средах
- Классификация
- Упругие волны в твёрдых телах
- Энергия и поток энергии в волне. Интерференция механических волн, понятие интерференционной картины. Интерференция механических волн
- Интерференция света в тонких плёнках
- Электромагнитные колебания, их характеристики. Колебательный контур. Электромеханические аналогии.
- Электромеханические аналогии уравнения Лагранжа-Максвелла
- Затухающие и вынужденные электромагнитные колебания.
- 29.Переменный и электрический ток. Импеданс и его виды. Резонанс в электрических цепях.
- 30.Электромагнитные волны, их характеристики. Энергия и поток энергии в электромагнитной волне.
- 31.Скорость света. Геометрическая оптика. Принцип Ферма. Отражение и преломление света.
- Линзы. Простейшие оптические системы.
- 33.Волновая оптика. Интерференция света и её применение.
- 34.Дифракция света, дифракционная решётка.
- 35. Квантовая оптика. Фотоэффект. Фотоны
- Законы внешнего фотоэффекта
- Вентильный фотоэффект
- Принцип неопределённости. Одномерное движение. Элементарное представление о волновой функции и уравнении Шредингера.
- Боровский атом водорода и его квантование. Боровские уровни и спектр атома водорода. Полуклассическая теория Бора
- 38. Реальный атом и его квантовое число. Таблица Менделеева.
- Структура периодической системы
- Значение периодической системы
- Устойчивость атомных ядер
- Применение изотопов человеком
- 40.Ядерные реакции. Радиоактивный распад и его виды. Закон радиоактивного распада. Ядерный синтез.
- Гамма-распад (изомерный переход)
- Ядерные силы и реакции.