Математическое выражение первого закона термодинамики для различных процессов
· Изохорный процесс (V = const)
Т.к. V=const, то PdV=0 и тогда из уравнения (3)
dQv=dUv (4)
Всё тепло, переданное системе, идёт на изменение ее внутренней энергии. Внутренняя энергия является функцией состояния. Она не зависит от пути перехода системы из одного состояния в другое, значит и теплота в таких процессах тоже будет представлять собой функцию состояния, т.е. она не будет зависеть от пути перехода системы из одного состояния в другое.
Для идеальных газовых систем внутренняя энергия не зависит ни от объёма, ни от давления, т.е. .
Для реальных газов при невысоких давлениях можно принять dUV ≈dUV. Учитывая это, индексы V и Р у dUV и dUP можно не писать.
· Изобарный процесс (Р = const)
Т.к. P=const , тогда PdV=d(PV), из чего следует
dQP=dUp+d(PV)=d(UP+PV)=dH . (5)
Всё тепло, сообщенное системе, расходуется на изменение энтальпии системы. Энтальпия является функцией состояния, поэтому теплота в изобарных процессах тоже будет представлять собой функцию состояния и не будет зависеть от пути перехода системы из одного состояния в другое.
· Изотермический процесс (Т = const)
Для идеального газа, как и для реального, при невысоких температурах внутренняя энергия является функцией температуры, поэтому U=const и уравнение (3) принимает вид
δQT=PdV
В изотермическом процессе всё тепло, сообщенное системе, тратится на работу против сил внешнего давления.
Если система находится в газообразном состоянии и подчиняется законам идеального газа, то для 1 моля газа PV=RT, тогда P=RT/V.
Подставляя эту формулу в уравнение (6), а затем интегрируя его, получим
?QT,=RT·lnV2/V1
или, пользуясь законом Бойля – Мариотта
V2/V1=P1/P2 ,
можно записать ?QT,=RT·lnP1/P2.
· Адиабатный процесс (d Q = 0)
В системе отсутствуют теплообменные процессы. Уравнение (3) примет вид
dU=PdV
При адиабатном процессе работа совершается системой за счет убыли её внутренней энергии.
- Материальная точка. Механическое движение. Связь кинематических переменных для простейших видов движения
- 3.Основные виды сил в механике и их природа
- 5. Импульс тела и системы тел. Центр масс. Закон сохранения импульса.
- 7. Понятие об уравнении состояния. Идеальный газ, его основные приближения и уравнение состояния. Обобщенное уравнение состояния системы
- Основное уравнение молекулярно - кинетической теории газа и его роль.
- Изопроцессы в идеальном газе и их графики
- 10.Термодинамический подход. Простейшие термодинамические параметры. Первое начало термодинамики и изопроцессы.
- Математическое выражение первого закона термодинамики для различных процессов
- 11.Тепловые двигатели. Цикл Карно и двигатель Карно.
- 12.Второе начало термодинамики и его статистическая природа.
- Электростатика. Закон Кулона. Силовые линии электрического поля и их свойства. Напряжённость.
- Свойства силовых линий электрического поля
- 14.Напряжённость электрического поля. Потенциал и его связь с напряжённостью
- Энергия взаимодействия электрических зарядов
- 16.Законы Ома в интегральной и дифференциальной форме. Понятие эдс, условие поддержания постоянного тока.
- 17. Энергетика тока, закон Джоуля - Ленца в интегральной и дифференциальной форме. Ток в разных средах.
- 18.Типы соединения проводников. Простейшие электрические цепи. Правила Кирхгофа.
- Резистор
- Последовательное соединение
- Первый закон
- Второй закон
- 19.Магнитное поле и его природа. Индукция и напряжённость. Свойства линий индукции. Магнитное поле прямого тока.
- Вычисление
- 20.Сила Ампера. Сила Лоренца. Движение заряда в магнитном поле.
- Лоренца сила
- Явление электрической и магнитной индукции. Элементарные представления об уравнениях Максвелла.
- Явление магнитной индукции.
- 22.Поведение механической системы в окрестности устойчивого равновесия.
- Устойчивое равновесие
- 23. Простейшие колебательные системы, общие методы определения собственной частоты. Сложение колебаний. Метод векторных диаграмм. Простейшие колебательные системы.
- Пружинный маятник.
- Математический маятник.
- Математический маятник с пружиной.
- Векторная диаграмма
- 24.Затухающие колебания. Вынужденные колебания. Резонанс. Автоколебательные системы.
- Автоколебательные системы
- 25.Упругие волны, их характеристики. Понятие упругой среды. Типы волн в различных средах
- Классификация
- Упругие волны в твёрдых телах
- Энергия и поток энергии в волне. Интерференция механических волн, понятие интерференционной картины. Интерференция механических волн
- Интерференция света в тонких плёнках
- Электромагнитные колебания, их характеристики. Колебательный контур. Электромеханические аналогии.
- Электромеханические аналогии уравнения Лагранжа-Максвелла
- Затухающие и вынужденные электромагнитные колебания.
- 29.Переменный и электрический ток. Импеданс и его виды. Резонанс в электрических цепях.
- 30.Электромагнитные волны, их характеристики. Энергия и поток энергии в электромагнитной волне.
- 31.Скорость света. Геометрическая оптика. Принцип Ферма. Отражение и преломление света.
- Линзы. Простейшие оптические системы.
- 33.Волновая оптика. Интерференция света и её применение.
- 34.Дифракция света, дифракционная решётка.
- 35. Квантовая оптика. Фотоэффект. Фотоны
- Законы внешнего фотоэффекта
- Вентильный фотоэффект
- Принцип неопределённости. Одномерное движение. Элементарное представление о волновой функции и уравнении Шредингера.
- Боровский атом водорода и его квантование. Боровские уровни и спектр атома водорода. Полуклассическая теория Бора
- 38. Реальный атом и его квантовое число. Таблица Менделеева.
- Структура периодической системы
- Значение периодической системы
- Устойчивость атомных ядер
- Применение изотопов человеком
- 40.Ядерные реакции. Радиоактивный распад и его виды. Закон радиоактивного распада. Ядерный синтез.
- Гамма-распад (изомерный переход)
- Ядерные силы и реакции.