3.1. Акустоелектроніка та акустооптика
Акустоелектроніка базується на використанні прямого та зворотнього п’єзоелектричних ефектів та на явищі взаємодії електричних полів із хвилями акустичних напружень. По суті, акустоелектроніка займається перетворенням електричних сигналів в акустичні та акустичних – в електричні.
Одним з основних приладів акустоелектроніки є акустоелектронний підсилювач (АЕП). На рис. 3.1 показана схема такого підсилювача на об’ємних звукових хвилях.
Н Рис. 3.1. Схема та основні елементи АЕП
П Рис. 3.2. Акустоелектронний підсилювач на поверхневих хвилях: а – схема підсилювача ( ПП – напівпровідник; Пр – п‘єзоелектрик); б – вигляд п’єзоперетво-рювача зверху
Кращими характеристиками володіють АЕП на поверхневих хвилях (рис. 3. 2, а). За допомогою електродів спеціальної форми ( рис. 3.2, б) у п’єзопертворю вачі вводять та з них знімають електричну напругу Uвх і Uвих, акустична хвиля йде вздовж плівки з високою електропровідністю. Плівка нанесена на поверхню напівпровідника, за цією ж плівкою пропускають електричний струм від джерела Е. В плівці відбувається взаємодія потоку електронів з акустичною хвилею. Матеріалом об’ємних та плівкових звукопроводів є напівпровідники з високою електропровідністю та рухливістю електронів, наприклад, Si з n-типом електропровідності та інші. П’єзоперетворювачі виготовляють з п’єзоелектрич них кристалів.
В цілому АЕП є вельми перспективними підсилювачами, особливо для сигналів НВЧ частот.
Акустоо́птика вивчає взаємодію оптичних й акустичних хвиль (акустооптична взаємодія), а також розробляє прилади, що використовують акустооптичну взаємодію. Акустооптичне обладнання дозволяє керувати амплітудою, частотою, поляризацією, напрямком поширення світлового променя.
В будь-якому акустооптичному обладнанні акустична хвиля збуджується за допомогою того або іншого п’єзоперетворювача. Таким чином, акустоопнтичними приладами керують за допомогою електричних сигналів (високої
частоти), які виробляються у відповідних електронних блоках.
Одними з основних акустоопнтичних приладів є акустооптичні модулятори, акустооптичні дефлектори й сканери та акустооптичні процесори.
А Рис. 3.3. Акустооптичний модулятор
Акустооптичні модулятори мають максимально просту конструкцію, але дозволяють здійснювати складні операції в акустооптичних процесорах.
Акустооптичні дефлектори й сканери – обладнання для керування
напрямком світлового променя в просторі. Сканери призначені для безперервного розгорнення променя, а у дефлекторі є набір фіксованих напрямків, по яких повинен відхилятися світловий промінь.
Принцип роботи дефлектора (рис.3.4) базується на дифракції світла
на ультразвукових хвилях, що розповсюджуються в кристалі. Кут дифракції
визначає формула Брегга: sinθ = λ0/ 2Λ = λ0 ν/2v, де θ – кут падіння світлового
променя на кристал, λ0 – довжина світлової хвилі у вакуумі, Λ –довжина звукової хвилі у кристалі, ν та v – частота та швидкість ультразвукових хвиль. На рис. 3.4 стрілками, спрямованими до акустооптичного кристала під кутом θ, показано промінь, що падає на кристал, стрілками, які йдуть від кристала – промінь, що пройшов без дифракції та дифрагований промінь. В результаті дифракції він відхиляється на Δθ. Змінюючи частоту звукової хвилі ν, змінюємо й кут відхилення дифрагованого променя і від переміщується за екраном фотоприйомного обладнання.
Відносна інтенсивність дифрагованого світла визначає відношення: I/I0 ~2 sin( ½ qLΔθ)/ (qLΔθ), де I0, I – інтенсивності світла,що падає та дифрагує, відповідно, q = 2π/ Λ, L – апертура ультразвукового променя.
Одним з найбільш ефективних акустооптичних матеріалів є монокристали парателурита TeO2.
Застосування в АОК двозаломлюючих кристалічних матеріалів дозволяє суттєво поліпшити характеристики дефлекторів.
Акустооптичні процесори. Важливою областю практичного застосування акустоопнтичних ефектів є системи обробки інформації, де акустооптичне обладнання використовують для обробки НВЧ-сигналів у реальному масштабі часу. Акустооптичні процесори здійснюють ті або інші математичні операції над оптичними й акустичними сигналами. Зокрема: корелятори — обчислюють кореляціюдвох сигналів; конвольвери — виконують математичну операцію згортання двох сигналів; матрично-векторні процесори — виконують операціїлинійної алгебри.
Рис. 3.4. Принцип роботи акустооптичного дефлектора : КУ – керувальний сигнал; БУ– блок управління; ПП – п’єзоперетворювач
- Посібник
- До вивчення дисципліни
- «Функіональні та інтелектуальні
- Матеріали»
- Базові принципи функціональної електроніки
- Основні галузі функціональної електроніки
- Мікроелектроніка
- Інтегральна
- Функціональна
- Класифікація матеріалів функціональної електроніки
- Агрегатний стан та різновиди матеріалів
- Тверде тіло
- Матеріали функціональної оелектроніки
- Структура матеріалів
- Структура
- Функціональні властивості матеріалів
- Функціонально активні матеріали
- Фізичні явища та особливі властивості матеріалів функціональної електроніки
- 2.1. Особливості електрофізичних та магнітних параметрів
- 2.1.1 Магнітні характеристики речовини
- 2.1.2. Електропровідність речовин
- Tип аiiiвv
- Tип аiiвvi
- 2.1.3. Діелектричні характеристики речовин
- Особливі властивості матеріалів функціональної електроніки
- 2.2.1. Поляризаційні ефекти неелектричного походження
- 2.2.2. Ефекти взаємодії світла із речовиною.
- Ефекти взаємодії різних чинників з речовиною.
- 3. Прилади та пристрої функціональної електроніки
- 3.1. Акустоелектроніка та акустооптика
- 3.2. Оптоелектроніка
- 3.3. Магнетоелектроніка та магнетооптика
- 3.4. Діелектроніка
- 3.5. Напівпровідникова та квантова електроніка (частково)
- 4. Технології одержання функціонально активних матеріалів
- 4.1 Класифікація методів вирощування кристалів
- 4.2. Отримання кристалів з твердої фази
- 4.3. Отримання кристалів з рідкої фази
- 4.3.1 Вирощування кристалів з розплаву
- 4.4. Отримання кристалів з газової фази
- 4.5. Епітаксія Для вирощуванні тонких кристалографічно орієнтованих шарів
- 4.5.1. Газофазна епітаксія
- Космичні технології
- Список використаної літератури