Изопроцессы в идеальном газе и их графики
Изобарный процесс (др.-греч. ισος, isos — «одинаковый» + βαρος, baros — «вес») — процесс изменения состояния термодинамической системы при постоянном давлении (P = const)
Зависимость объёма газа от температуры при неизменном давлении была экспериментально исследована в 1802 году Жозефом Луи Гей-Люссаком. Закон Гей-Люссака: При постоянном давлении и неизменных значениях массы газа и его молярной массы, отношение объёма газа к его абсолютной температуре остаётся постоянным: V/T = const. Уравнение изобарного процесса для некоторого неизменного количества вещества ν имеет вид:
|
где V0 – объем газа при температуре 0 °С. Коэффициент α равен (1/273,15) К–1. Его называют температурным коэффициентом объемного расширения газов.
Изохорный процесс (от греч. хора — занимаемое место) — процесс изменения состояния термодинамической системы при постоянном обьеме (V = const). Для идеальных газов изохорический процесс описывается законом Шарля: для данной массы газа при постоянном объеме, давление прямо пропорционально температуре:
Линия, изображающая изохорный процесс на диаграмме, называется изохорой.
ещё стоит указать что поданная к газу энергия расходуется на изменение внутренней энергии то есть Q = 3* ν*R*T/2=3*V*ΔP, где R — универсальная газовая постоянная, ν количество молей в газе, T температура в Кельвинах, V объём газа, ΔP приращение изменения давления. а линию, изображающая изохорный процесс на диаграмме, в осях Р(Т), стоит продлить и пунктиром соединить с началом координат, так как может возникнуть недопонимание Уравнение изохорного процесса может быть записано в виде:
|
где p0 – давление газа при T = T0 = 273,15 К (т. е. при температуре 0 °С). Коэффициент α, равный (1/273,15) К–1, называют температурным коэффициентом давления.
Изотермический процесс (от греч. «термос» — тёплый, горячий) — процесс изменения состояния термодинамической системы при постоянной температуре (T = const)(PV = const). Изотермический процесс описывается законом Бойля — Мариотта:
При постоянной температуре и неизменных значениях массы газа и его молярной массы, произведение объёма газа на его давление остаётся постоянным: PV = const.
Изоэнтропийный процесс — процесс изменения состояния термодинамической системы при постоянной энтропии (S = const). Изоэнтропийным является, например, обратимый адиабатический процесс: в таком процессе не происходит теплообмена с окружающей средой. Идеальный газ в таком процессе описывается следующим уравнением:
pVγ = const
где γ — показатель адиабаты, определяемый типом газа.
- Материальная точка. Механическое движение. Связь кинематических переменных для простейших видов движения
- 3.Основные виды сил в механике и их природа
- 5. Импульс тела и системы тел. Центр масс. Закон сохранения импульса.
- 7. Понятие об уравнении состояния. Идеальный газ, его основные приближения и уравнение состояния. Обобщенное уравнение состояния системы
- Основное уравнение молекулярно - кинетической теории газа и его роль.
- Изопроцессы в идеальном газе и их графики
- 10.Термодинамический подход. Простейшие термодинамические параметры. Первое начало термодинамики и изопроцессы.
- Математическое выражение первого закона термодинамики для различных процессов
- 11.Тепловые двигатели. Цикл Карно и двигатель Карно.
- 12.Второе начало термодинамики и его статистическая природа.
- Электростатика. Закон Кулона. Силовые линии электрического поля и их свойства. Напряжённость.
- Свойства силовых линий электрического поля
- 14.Напряжённость электрического поля. Потенциал и его связь с напряжённостью
- Энергия взаимодействия электрических зарядов
- 16.Законы Ома в интегральной и дифференциальной форме. Понятие эдс, условие поддержания постоянного тока.
- 17. Энергетика тока, закон Джоуля - Ленца в интегральной и дифференциальной форме. Ток в разных средах.
- 18.Типы соединения проводников. Простейшие электрические цепи. Правила Кирхгофа.
- Резистор
- Последовательное соединение
- Первый закон
- Второй закон
- 19.Магнитное поле и его природа. Индукция и напряжённость. Свойства линий индукции. Магнитное поле прямого тока.
- Вычисление
- 20.Сила Ампера. Сила Лоренца. Движение заряда в магнитном поле.
- Лоренца сила
- Явление электрической и магнитной индукции. Элементарные представления об уравнениях Максвелла.
- Явление магнитной индукции.
- 22.Поведение механической системы в окрестности устойчивого равновесия.
- Устойчивое равновесие
- 23. Простейшие колебательные системы, общие методы определения собственной частоты. Сложение колебаний. Метод векторных диаграмм. Простейшие колебательные системы.
- Пружинный маятник.
- Математический маятник.
- Математический маятник с пружиной.
- Векторная диаграмма
- 24.Затухающие колебания. Вынужденные колебания. Резонанс. Автоколебательные системы.
- Автоколебательные системы
- 25.Упругие волны, их характеристики. Понятие упругой среды. Типы волн в различных средах
- Классификация
- Упругие волны в твёрдых телах
- Энергия и поток энергии в волне. Интерференция механических волн, понятие интерференционной картины. Интерференция механических волн
- Интерференция света в тонких плёнках
- Электромагнитные колебания, их характеристики. Колебательный контур. Электромеханические аналогии.
- Электромеханические аналогии уравнения Лагранжа-Максвелла
- Затухающие и вынужденные электромагнитные колебания.
- 29.Переменный и электрический ток. Импеданс и его виды. Резонанс в электрических цепях.
- 30.Электромагнитные волны, их характеристики. Энергия и поток энергии в электромагнитной волне.
- 31.Скорость света. Геометрическая оптика. Принцип Ферма. Отражение и преломление света.
- Линзы. Простейшие оптические системы.
- 33.Волновая оптика. Интерференция света и её применение.
- 34.Дифракция света, дифракционная решётка.
- 35. Квантовая оптика. Фотоэффект. Фотоны
- Законы внешнего фотоэффекта
- Вентильный фотоэффект
- Принцип неопределённости. Одномерное движение. Элементарное представление о волновой функции и уравнении Шредингера.
- Боровский атом водорода и его квантование. Боровские уровни и спектр атома водорода. Полуклассическая теория Бора
- 38. Реальный атом и его квантовое число. Таблица Менделеева.
- Структура периодической системы
- Значение периодической системы
- Устойчивость атомных ядер
- Применение изотопов человеком
- 40.Ядерные реакции. Радиоактивный распад и его виды. Закон радиоактивного распада. Ядерный синтез.
- Гамма-распад (изомерный переход)
- Ядерные силы и реакции.