logo search
Материальная точка

Математический маятник с пружиной.

Рассмотрим еще один пример колебательной системы, являющейся «гибридом» математического и пружинного маятника (Рис. 199): к шарику, подвешенному на нити длиной l, прикреплена легкая пружина так, что в положении равновесия нить маятника располагается вертикально (в этом случае пружина не деформирована). По-прежнему, положение маятника будем описывать с помощью угла отклонения φ, который будем считать малым. Уравнение динамики вращательного движения относительно точки подвеса для шарика будет иметь вид

, (1)

где - момент инерции маятника, ε - угловое ускорение, - момент силы тяжести, - момент силы упругости. Считая угол отклонения малым, удлинение пружины можно представить в виде и при этом можно считать, что ось пружины все время остается горизонтальной. В этом же приближении можно положить , . Поэтому уравнение (1) упрощается

,

или

. (2)

Это уравнение является уравнением гармонических колебаний: ускорение пропорционально смещения от положения равновесия. Круговая частота этих колебаний равна

. (3)