61.Ветрогенераторы. Возможность применения. Устройство и категории ветрогенераторов.
Ветрогенераторы (ветроэлектрическая установка или сокращенно ВЭУ) — устройство для преобразования кинетической энергии ветра в электрическую.
Ветровая энергия представляет собой возобновляемый источник энергии, являющийся вторичным по отношению к солнечной энергии. Причиной возникновения ветра является разности температур в атмосфере, образующиеся в результате действия солнечного излучения, которые, в свою очередь, обуславливают возникновение различных давлений. Ветер возникает в процессе рассеивания энергии, накопившейся вследствие наличия этих различных давлений.
По оценкам различных авторов, общий ветроэнергетический потенциал Земли равен 1200 ТВт, однако возможности использования этого вида энергии в различных районах Земли неодинаковы. Среднегодовая скорость ветра на высоте 20-30 м над поверхностью Земли должна быть достаточно большой, чтобы мощность воздушного потока, проходящего через надлежащим образом ориентированное вертикальное сечение, достигала значения, приемлемого для преобразования. Ветроэнергетическая установка, расположенная на площадке, где среднегодовая удельная мощность воздушного потока составляет около 500 Вт/м², может преобразовать в электроэнергию около 175 из этих 500 Вт/м².
Энергия, содержащаяся в потоке движущегося воздуха, пропорциональна кубу скорости ветра. Однако не вся энергия воздушного потока может быть использована даже с помощью идеального устройства. Теоретически коэффициент полезного использования (КПИ) энергии воздушного потока может быть равен 59,3%. На практике, согласно опубликованным данным, максимальный КПИ энергии ветра в реальном ветроагрегате равен приблизительно 50%, однако и этот показатель достигается не при всех скоростях, а только при оптимальной скорости, предусмотренной проектом. Кроме того, часть энергии воздушного потока теряется при преобразовании механической энергии в электрическую, которое осуществляется с КПД обычно 75-95%. Учитывая все эти факторы, удельная электрическая мощность, выдаваемая реальным ветроэнергетическим агрегатом, видимо, составляет 30-40 % мощности воздушного потока при условии, что этот агрегат работает устойчиво в диапазоне скоростей, предусмотренных проектом. Однако иногда ветер имеет скорость, выходящую за пределы расчетных скоростей. Скорость ветра бывает настолько низкой, что ветроагрегат совсем не может работать, или настолько высокой, что ветроагрегат необходимо остановить и принять меры по его защите от разрушения. Если скорость ветра превышает номинальную рабочую скорость, часть извлекаемой механической энергии ветра не используется, с тем чтобы не превышать номинальный электрической мощности генератора. Учитывая эти факторы, удельная выработка электрической энергии в теченин года, видимо составляет 15-30% энергии ветра, или даже меньше, в зависимости от местоположения и параметров ветроагрегата.
Ветрогенераторы можно разделить на две категории: промышленные и домашние (для частного использования). Промышленные устанавливаются государством или крупными энергетическими корпорациями. Как правило, их объединяют в сети, в результате получается ветряная электростанция. Её основное отличие от традиционных (тепловых, атомных) — полное отсутствие как сырья, так и отходов. Единственное важное требование для ВЭС — высокий среднегодовой уровень ветра. Мощность современных ветрогенераторов достигает 6 МВт.
Строение малой ветряной установки
Генератор (как правило это синхронный трёхфазный с возбуждением от постоянных магнитов напряжением =24 В)
Рис.8.9. 1.
Ветер раскручивает ротор. Выработанное электричество подаётся через контроллер на аккумуляторы. Инвертор преобразует напряжение на контактах аккумулятора в пригодное для использования
Строение промышленной ветряной установки
Рис.8.9. 2.
1.Фундамент; 2.Силовой шкаф, включающий силовые контакторы и цепи управления
3.Башня ;4.Лестница ;5.Поворотный механизм; 6.Гондола; 7.Электрический генератор
8.Система слежения за направлением и скоростью ветра (анемометр); 9.Тормозная система
10.Трансмиссия; 11.Лопасти; 12.Система изменения угла атаки лопасти; 13.Колпак ротора
- 2. Основные термодинамические параметры состояния.
- 3.Теплота и работа
- 4.Уравнение состояния идеальных газов.
- 5.Первый закон термодинамики.
- Аналитическое выражение первого закона термодинамики.
- Энтальпия.
- Теплоемкость газов. Энтропия.
- 6. Второй закон термодинамики.
- 7. Термодинамические процессы идеальных газов (изобарный, изотермический, изохорный)
- 8. Термодинамические процессы идеальных газов (политропные, адиабатные)
- 9. Термодинамический кпд и холодильный коэффициент циклов.
- 10. Прямой обратимый цикл Карно.
- 11. Обратный обратимый цикл Карно.
- 12. Циклы паротурбинных установок. Циклы Ренкина на насыщенном и перегретом паре.
- 13. Классификация холодильных установок, хладагенты и требования к ним.
- 14. Основные виды переноса теплоты
- 15. Конвективный теплообмен. Виды движения теплоносителей.
- 16. Классификация теплообменных аппаратов. Теплоносители.
- 17. Расчет рекуперативных Теплообменных аппаратов.
- 18. Типы тепловых электростанций. Классификация.
- 19. Технологический процесс преобразования химической энергии топлива в электроэнергию на тэс.
- 20. Классификация атомных реакторов
- 21. Устройство о ядерных реакторов различного типа
- 22. Ресурсы, потребляемые аэс, ее продукция, отходы производства
- 23. Технологические схемы производства электроэнергии на аэс.
- 24. Паровые турбины. Устройство паровой турбины
- 25. Проточная часть и принцип действия турбины
- 26.Типы паровых турбин и область их использования
- 27. Основные технические требования к паровым турбинам и их характеристики
- 29. Гту с изохорным подводом теплоты. Термодинамический кпд и работа цикла с изохорным подводом теплоты. Достоинства и недостатки гту.
- 30. Пгу. Их классификация. Достоинства и недостатки.
- 31. Котельные установки. Общие понятия и определения
- 32. Классификация котельных установок.
- 33. Каркас и обмуровка котла.
- 34. Тепловой и эксергетический балансы котла. Составляющие приходной части теплового баланса.
- 35. Общее уравнение теплового баланса ку. Составляющие расходной части теплового баланса.
- 36. Схемы подачи воздуха и удаления продуктов сгорания
- 37. Естественная и искусственная тяга. Принцип работы дымовой трубы.
- 38. Паросепарирующие устройства котлов
- 39. Пароперегреватели. Назначение, устройство, виды.
- 40. Водяные экономайзеры ку. Назначение, конструкция, виды
- 41. Воздухоподогреватели ку. Назначение, конструкция, виды
- 42. Топливо, состав и технические характеристики топлива Понятие условного топлива, высшей и низшей теплоты сгорания
- 43. Классификация систем теплоснабжения и тепловых нагрузок
- 44. Тепловые сети городов
- 45. Теплоэлектроцентрали. Преимущества раздельной и комбинированной выработки электроэнергии и тепла
- 47. Классификация нагнетателей. Области применения
- 48. Производительность, напор и давление, создаваемые нагнетателем
- 49. Мощность и кпд нагнетателей. Совместная работа насоса и сети.
- 50. Классификация двигателей внутреннего сгорания.
- 52. Основные теплоносители теплообменных аппаратов
- 54. Устройство двс. История развития и параметры работы двс Отличия реальной и идеальной индикаторных диаграмм двс.
- 55. Нетрадиционные и возобновляемые источники энергии
- 56. Прямое преобразование солнечной энергии. Солнечные водоподогреватели.
- 57. Подогреватели воздуха. Солнечные коллекторы.
- 58. Преобразование солнечной радиации в электрический ток
- 59. Гидроэнергетика. Основные принципы использования энергии воды. Устройство русловой гэс
- 60. Приливные электростанции
- 61.Ветрогенераторы. Возможность применения. Устройство и категории ветрогенераторов.
- 62. Типы ветрогенераторов. Установки с горизонтальной осью вращения. Преимущества и недостатки.
- 63. Типы ветрогенераторов. Установки с вертикальной осью вращения. Преимущества и недостатки.
- 64. Водородная энергетика
- Принцип работы топливного элемента: