4.5.5 Влияние геотермальной энергетики на окружающую среду
Основное воздействие на окружающую среду ГеоТЭС связано с разработкой месторождения, строительством зданий и паропроводов. Для обеспечения ГеоТЭС необходимым количеством пара или горячей воды требуется бурение большого количества скважин. Например, в долине Гейзеров (США) производительность одной скважины обеспечивает в среднем 7 МВт полезной мощности. Поэтому для работы станции мощностью 1000 МВт требуется 150 скважин, которые занимают территорию более 19 кв. км. Последствием геотермальных разработок являются возможные оседания почвы и сейсмические эффекты. Так, при эксплуатации месторождения Вайрокей (США) с 1954 по 1970 годы поверхность земли просела почти на 4 м, а площадь, на которой произошло оседание грунта, составила порядка 70 кв. км., ежегодно продолжая увеличиваться.
Так как на ГеоТЭС не сжигается топливо, то количество вредных газообразных выбросов в атмосферу значительно меньше чем на ТЭС. Но эти выбросы имеют другой химический состав по сравнению с ТЭС. Пар из геотермальных скважин имеет газовые примеси, которые на 80 % состоят из диоксида углерода и содержат в небольших количествах водород, азот, метан, аммиак и сероводород. Наиболее вредным их них является сероводород.
Из-за более низкого КПД ГеоТЭС по сравнению с ТЭС, ее потребность в охлаждающей воде на 1 кВтч электроэнергии в 4…5 раз выше. Сброс охлаждающей воды и конденсата в водоемы может вызвать их тепловое загрязнение, а также повышение концентрации различных солей и таких элементов как мышьяк, бор, ртуть, калий и т.д. Сброс отработанных термальных вод может привести к заболачиванию отдельных участков почвы и загрязнению поверхностных и грунтовых вод.
В атмосферу также выбрасываются водяные пары, что связано с изменением влажности воздуха, выделением тепловой энергии и шумовыми эффектами.
Для снижения негативного воздействия на окружающую среду необходимо создание круговой циркуляции теплоносителя на ГеоТЭС по системе «скважина – теплосъемные аппараты – скважина – пласт». Это даст возможность избежать поступления термальных вод на поверхность земли, в поверхностные и грунтовые воды, обеспечить сохранение пластового давления, исключить оседание грунта и сейсмические проявления [2].
- Южно-Уральский Государственный Университет
- 3.7 Малые аэс…………………………………………………………………...23
- Запасы и ресурсы традиционных и нетрадиционных источников энергии
- Энергоресурсы планеты
- Возможности использования энергоресурсов
- Энергоресурсы России
- Совершенствование способов производства энергии
- 2.1 Получение энергии на тэс
- 2.2 Переменный график электропотребления
- 2.3 Проблемы передачи электроэнергии
- 2.4 Комбинированная выработка тепловой и электрической энергии
- 2.5 Газотурбинные и парогазовые установки (гту и пгу)
- 2.6 Магнитно-гидродинамические установки (мгду)
- 2.7 Топливные элементы
- 2.8 Тепловые насосы
- Нетрадиционные источники энергии. Энергетические установки малой мощности
- Место малой энергетики в энергетике России
- 3.2 Газотурбинные и парогазовые малые электростанции
- 3.3 Мини тэц
- 3.4 Дизельные электростанции
- 3.5 Газопоршневые электростанции
- 3.6 Малые гибридные электростанции
- 3.7 Малые аэс
- 3.8 Малая гидроэнергетика
- 4 Возобновляемые источники энергии
- 4.1 Проблемы использования возобновляемых источников энергии
- 4.2 Гидроэнергетика
- 4.3 Солнечная энергия
- 4.3.1 Преобразование солнечной энергии в тепловую энергию
- 4.3.2 Фотоэлектрическое преобразование солнечной энергии
- 4.3.3 Термодинамическое преобразование солнечной энергии в электрическую энергию
- 4.3.4 Перспективы развития солнечной энергетики в России
- 4.4 Ветроэнергетика
- 4.4.1 Особенности использования энергии ветра
- 4.4.2 Классификация ветроустановок
- 4.4.3 Производство электроэнергии с помощью вэу
- 4.4.4 Ветроэнергетика России
- 4.5 Геотермальная энергетика
- 4.5.1 Происхождение геотермальной энергии
- 4.5.2 Техника извлечения геотермального тепла
- 4.5.3 Использование геотермальных источников для выработки электроэнергии
- 4.5.4 Использование геотермальных источников для теплоснабжения
- 4.5.5 Влияние геотермальной энергетики на окружающую среду
- 4.5.6 Геотермальная энергетика России
- 4.6 Энергия приливов
- 4.6.1 Причины возникновения приливов
- 4.6.2 Приливные электростанции (пэс)
- 4.6.3 Влияние пэс на окружающую среду
- 4.6.4 Приливная энергетика России
- 4.7 Энергия волн и океанических течений
- 4.7.1 Энергия волн
- 4.7.2. Энергия океанических течений
- 4.8 Тепловая энергия морей и океанов
- 4.8.1 Ресурсы тепловой энергии океана
- 4.8.2 Океанические тепловые электростанции
- 4.9 Использование энергии биомассы
- 4.9.1 Ресурсы биомассы
- 4.9.2 Термохимическая конверсия биомассы (сжигание, пиролиз, газификация)
- 4.9.3 Биотехнологическая конверсия биомассы
- 4.9.4. Экологические проблемы биоэнергетики
- 5 Утилизация твердых бытовых отходов (тбо)
- 5.1 Характеристика твердых бытовых отходов (тбо)
- 5.2 Переработка тбо на полигонах
- 5.3 Компостирование тбо
- 5.4 Сжигание тбо в специальных мусоросжигательных установках