2.1. Работа выхода.
При сближении атомов и образовании из них кристалла потенциальные барьеры для электронов, отделяющие соседние атомы, понижаются и сужаются. Потенциальный же барьер у поверхности кристалла (у внешней его границы) отстается практически столь же высоким, как и у изолированных атомов (смотрите рис.2.1).
Рис.2.1.
Поэтому электроны в кристалле находятся как бы в потенциальной яме, выход из которой требует затраты энергии по преодолению силы, действующей на них со стороны кристалла.
Электрон, вышедший из металла и находящийся у его поверхности на расстоянии порядка нескольких постоянных решетки, индуцирует в металле заряд + e . Этот наведенный заряд (электрическое изображение) и вышедший электрон притягиваются с кулоновской силой, называемой силой электрического изображения. На расстоянии от поверхности кристалла порядка или меньше межатомного довольно трудно определить силы, удерживающие электрон в кристалле. Но для большинства практически важных задач достаточно знать полную высоту барьера и высоту барьера Ф. На рис.2.2 показан выход из металла (а) и из полупроводника (б); 1 - работа выхода из глубины валентной зоны.
а б
Рис.2.2.
Изменение энергии происходит на очень малой длине (порядка нескольких межатомных расстояний), поэтому стенки ямы можно считать вертикальными.
Высоту барьера, отсчитанную от дна зоны проводимости Ес , называют внешней работой выхода или электронным сродством:
( 2.1)
Высота барьера, отсчитанная от уровня Ферми ЕF, называется термодинамической работой выхода
(2.2)
Остановимся подробнее на выражении (2.1). Для металлов уровень Ферми совпадает с максимальной энергией электронов проводимости (рис.2.2а) при температуре Т = 0 К. Поэтому Ф в металлах совпадает с работой выхода, необходимой для удаления электрона с максимальной энергией из металла в вакуум. Для полупроводника или диэлектрика (рис.2.2б) термодинамическая работа выхода Ф не соответствует работе выхода какого-либо реального электрона, если уровень Ферми лежит в запрещенной зоне и не совпадает ни с каким уровнем примеси. Однако определение (2.1) распространяется и на полупроводники.
Работа выхода может очень сильно зависеть от самых ничтожных загрязнений поверхности. Подобрав надлежащим образом покрытие поверхности, можно сильно снизить работу выхода. Так , например, нанесение на поверхность вольфрама слоя оксида щелочноземельного металла ( Ca, Sr, Ba) снижает работу выхода с 4,5 до 1,5 ...2 эВ.
- 1.2. Колебания кристаллической решётки. Фононы.
- 1.3 Основы теории Дебая.
- 1.4. Сверхтекучесть.
- 1.5. Теория свободных электронов в металле.
- 1.6. Энергетический спектр электронов в твердых телах.
- 1.7. Распределение электронов по состояниям в кристалле. Металлы, диэлектрики, полупроводники.
- 1.10. Статистика Ферми - Дирака.
- 1.11. Электропроводность металлов.
- 1.12. Собственный полупроводник.
- 1.13. Примесные полупроводники.
- 1.14. Сверхпроводимость.
- 1.15. Ионная электропроводность твердых тел.
- 2. Контактные явления. Термоэлектрические явления.
- 2.1. Работа выхода.
- 2.2. Термоэлектронная эмиссия.
- 2.3. Контактная разность потенциалов.
- 2.4. Термоэлектрические явления.
- 3. Атомное ядро и элементарные частицы.
- 3.1. Состав и характеристики атомного ядра.
- 3.2. Модели атомного ядра
- 3.3. Размеры ядер.
- 3.4. Ядерные силы.
- 3.5. Атомное ядро. Энергия связи ядра.
- 3.6. Радиоактивность.
- 3.7. Ядерные реакции. Деление ядер.
- Элементарные частицы.
- 1.Виды взаимодействия и классы элементарных частиц.
- 2. Частицы и античастицы.
- Элементарные составляющие материи
- Частицы
- Античастицы
- Связь характеристик частиц и античастиц
- Вселенная
- История Вселенной
- Звездная эволюция
- Теоретический расчет возможных ядерных реакций в звездах различной массы
- Экзаменационные вопросы (4 семестр).