Вопрос 17. Уравнение Бернулли и его применение для определения статического и динамического давления.
Пусть по наклонной трубе (или трубке тока) переменного сечения движется жидкость слева направо. Мысленно выделим область трубки, ограниченную сечениями S1 и S2 , в которых скорости течения V1 и V2 , рис. 1 из предыдущего параграфа.
Определим изменение полной энергии, происходящее в этой области за малый промежуток времени t. За это время масса жидкости, заключенная между сечениями S1 и S1 втекает в рассматриваемую область, а масса, заключенная между S2 и S2 вытекает из нее. Иных изменений в данной области не происходит. Поэтому изменение полной энергии Е равно разности полных энергий вытекающей и втекающей масс:
Е = ( Ек + Еп)2 – ( Ек + Еп) 1 или (1)
Е = mV22/2 + mgh2 - mV12 - mgh1 (2)
В соответствии с законом сохранения энергии найденное изменение энергии равно работе А внешних сил (давления) по перемещению массы m: Е = А. (3)
Определим эту работу. Внешняя сила давления F1 совершает работу А1 по перемещению втекающей массы на пути V1t, в то же время вытекающая масса на пути V2t совершает А2 против внешней силы F2. Поэтому А1 = F1V1t; A2 = - F2V2t («-» т.к. сила направлена против перемещения), а искомая работа А = А1 + А2 = F1V1t - F2V2t.
Учитывая, что F1 = p1S1 и F2 = p2S2 , получим А = p1S1 V1t - p2S2 V2t, но S1 V1t =S2 V2t = V, т.к. жидкость не сжимается.
Поэтому А = р1V – p2V (4)
Объединяя (2) и (4), получим mV22/2 + mgh2 + p2V = mV12/2 + mgh1 + p1V |:V V22/2 + gh2 + p2 = V12/2 + gh1 + p1 . (m/V =)
Поскольку сечения S1 и S2 выбраны произвольно, можно окончательно написать V2/2 + gh + p = const - уравнение Бернулли (1700 – 1782г., петербургский академик). (5)
V2/2 –удельная кинетическая энергия жидкости
gh – удельная потенциальная энергия жидкости
р - удельная энергия жидкости, обусл. силами давления
При установившемся движении идеальной несжимаемой жидкости сумма удельной энергии давления и кинетической и потенциальной удельных энергий остается постоянной на любом поперечном сечении потока. Единицей давления 1 Па = 1Н/м2 = 1 Н м/м3 = Дж/м3.
Следовательно, уравнение Бернулли выражает закон сохранения энергии (удельной). Все члены (5) можно рассматривать как давления, причем р называется статическим, V2/2 –динамическим, gh –гидравлическим давлением (напором).
Следовательно,в установившемся потоке идеальной несжимаемой жидкости полное давление (напор) , слагающееся из динамичес-кого, гидравлического и статического давлений , постоянно на любом поперечном сечении потока (уравнение Бернулли). Для горизонтальной трубки тока (h1 = h2) уравнение Бернулли примет вид V2/2 + p =const.
Из уравнений Бернулли и неразрывности следует, что в местах сужения трубопровода скорость течения жидкости возрастает, а статическое давление понижается. Уравнения (1) – (5) применимы и для газа, поскольку, как показывает теория и опыт, при скоростях движения газа, меньших скорости распространения звука в нем, сжимаемостью газа можно пренебречь.
Уравнение Бернулли является одним из основных законов механики движения жидкости и газов, имеющих большое прикладное значение. Примеры: 1) гидротурбина (потенциальная энергия давления воды в узком сопле переходит в кинетическую энергию, за счет которой рабочее колесо приводится во вращение) 2) гидротаран, 3)аэрация почвы, 4)карбюратор двигателей, 5) пульверизатор, 6)сталкивание двух параходов, близко идущих одним курсом.
Давление в движущейся жидкости можно измерить с помощью неподвижной манометрической трубки (зонд), если ее соприкасающееся с текущей жидкостью отверстие площади S ориентировано параллельно направлению движения жидкости, рис. 1.
Действительно, элементарно тонкий слой жидкости в манометрической трубке, примыкающий к ее отверстию, находится в покое. Значит, сила давления F =pS, действующая со стороны текущей жидкости, уравновешивается силой, с которой столб жидкости в трубке высотой h действует на него в противоположном направлении (вниз) и которая равна весу столба жидкости F = ghS (внутри трубки, у ее закрытого конца, над поверхностью жидкости вакуум). Т.о., Р = gh, т.е. давление р в той точке потока жидкости, на уровне которой находится отверстие в манометрической трубке, равно весу столба жидкости, находящейся в трубке, площадь сечения которого равна единице.
Давление в движущейся жидкости в соответствии с законом Бернулли связано со скоростью ее частиц. В более широких участках трубки, где скорость жидкости мала, давление жидкости будет по величине большим, чем в более узких участках той же трубки тока, где скорость жидкости больше (трубка Вентура).
Совсем другое давление будет измерять в движущейся жидкости неподвижная манометрическая трубка, изогнутая под прямым углом, так что ее отверстие, находящееся в жидкости, ориентировано навстречу потоку и его площадь перпендикулярна к линиям тока (трубка Пито), рис. 2.
Пусть вдали от манометрической трубки давление и скорость жидкости равны р и V . В сечении же, совпадающем с отверстием манометрической трубки, скорость жидкости V = 0, т.к. жидкость, достигшая отверстия, здесь затормаживается. Обозначим давление в сечении отверстия р, то в соответствии с законом Бернулли для двух данных сечений трубки тока получим: Р + V2/2 = p, т.к. (h и h равны). (6)
Возрастание давления у отверстия изогнутой трубки обусловливается сжатием затормаживаемой здесь жидкости. Из (6) можно определить V жидкости V = 2(р - р)/ (7)
- Вопрос 1. Со и ск. Основные хар-ки мех-го движения. Прямолинейные и криволинейныое движение мт. Скорость и ускорение.
- Вопрос 2. Движение мт по окружности. Нормальное и тангенциальное ускорение. Связь угловых и линейных хар-к движения.
- Вопрос 3. Векторные величины. Сложение, вычитание и умножение векторов. Сила и масса. Законы Ньютона.
- Вопрос 4. Силы при криволинейном движении.
- Вопрос 5. Закон всемирного тяготения. Зависимость веса тела от высоты над уровнем моря и геог-кой широты. Гравитационное поле.
- Вопрос 6. Нормальное гравитационное поле и его аномалии.
- Вопрос 7. Гравитационные явления и процессы.
- Вопрос 8. Орбитальное движение Земли и ее осевое вращение. Неравномерности вращения Земли и их физическая природа.
- Вопрос 9. Приливообразующие силы и их геофизическая роль.
- Вопрос 10. Закон сохранения и изменения количества движения.
- Вопрос 11. Работа силы и мощность. Кинетическая и потенциальная энергия.
- 2) Потенциальная энергия тела массы m, находящегося в гравитационном поле другого тела массой м на расстоянии r0 от него.
- 3) Определим потенциальную энергию тела массой m, находящегося на небольшой высоте h над земной поверхностью.
- Вопрос 12. Гармоническое колебание и его хар-ки. Маятники.
- Вопрос 13. Энергия колеблющегося тела. Собственные колебания Земли. Сложение гармонических колебаний.
- Вопрос 14. Волна и ее хар-ки. Продольные и поперечные волны. Принцип Гюйгенса. Интенсивность волны.
- Вопрос 15. Звуковая волна. Хар-ки звука. Инфразвук и ультразвук. Принцип локации.
- Вопрос 16. Элементы механики жидкости. Основные определения. Уравнение неразрывности.
- Вопрос 17. Уравнение Бернулли и его применение для определения статического и динамического давления.
- Вопрос 18. Основные положения мкт строения вещества. Межмолекулярные силы. Агрегатное состояние вещества.
- Вопрос 19. Макроскопические системы. Термодинамическое равновесие. Равновесные и неравновесные процессы. Обратимые и необратимые процессы.
- Вопрос 20. Газовые законы (Бойля-Мариотта, Гей-Люсака, Авогадро). Уравнение состояния идеального газа.
- Вопрос 21. Барометрическая формула и распределение Больцмана.
- Вопрос 22. Явления переноса в газах и жидкостях.Диффузия в газах.
- Вопрос 23. Явление переноса. Телопроводность.
- Вопрос 24. Явления переноса в газах и жидкостях. Внутреннее трение (вязкость).
- Вопрос 44. Мпз. Магнитные полюса Земли. Элементы земного магнетизма. Магнитные карты изогон, изоклин и изодин.
- Вопрос 45. Межпланетное мп. Солнечный ветер. Магнитосфера Земли. Радиационные пояса Земли.
- Вопрос 46. Природа геомагнитного поля. Источники энергии геомагнитного поля. Мп в морской и океанической воде.
- Вопрос 47. Главное магнитное поле Земли и его аномалии.
- Вопрос 48. Главное и переменное мп Земли. Вариации мп и их природа. Магнитные бури.
- Вопрос 35. Геоэлектрическое поле Земли. Электрическая проводимость гидросферы, земной коры и её недр.
- Вопрос 36. Электрическая проводимость атмосферы, ионосферы. Ионосферные слои. Влияние ионосферы на распространение радиоволн.
- Вопрос 37. Электротеллурическое поле. Региональные и локальные эп земной коры. Вариации меридиональной и широтной напряженноти. Напряженность электротеллурического поля.