logo
Шпоры 1 семестр

2) Потенциальная энергия тела массы m, находящегося в гравитационном поле другого тела массой м на расстоянии r0 от него.

Для этого рассчитаем работу А перемещения первого тела по пути x, соответствующем максимальному сближению тел. Учитывая переменный характер силы тяготения данную задачу просто решить путем интегрирования А = - Fdr = - fmM dr/r2 = f mM/rп – fmM/r0. (8)А = Епо – Епк,

где r – переменное расстояние между центрами тяготеющих масс. Знак (-) потому, что для сближающихся масс dr отрицателен, т.к. работа dA = Fdr должна быть положительной, поскольку перемещение массы происходит в направлении действия силы.

Данную задачу можно было решить и без интегрирования, разбивая путь на достаточно малые отрезки, на каждом из которых можно считать силу тяготения постоянной, подсчитать совершаемые на этих отрезках работы и просуммировать их. Но это достаточно громоздко.

Из (4) и (6) следует, что Еп = -fMm/r - потенциальная энергия тяготения. Знак (-) показывает, что по мере самопроизвольного сближения тяготеющих тел их потенциальная энергия должна уменьшаться, переходя в кинетическую.

В механике доказывается, что всякая предоставленная самой себе система стремится перейти в состояние, соответствующее минимуму потенциальной энергии.

Из (7) следует, что максимальное значение кинетической энергии Еп (Wп = 0) тяготеющие тела будут иметь в случае, когда они удалены на r = др. от др. и Еп равна min при rrmin.