Вопрос 23. Явление переноса. Телопроводность.
В термодинамически неравновесных системах возникают особые необратимые процессы, называемые явлениями переноса, в результате которых происходит пространственный перенос энергии, массы количества движения. К явлениям переноса относятся теплопроводность (обусловлена переносом энергии), диффузия (обусловлена переносом массы) и внутреннее трение (обусловлено переносом количества движения). Для этих явлений перенос энергии, массы и количества движения всегда происходит в направлении, обратном их градиенту, т. е. система приближается к состоянию термодинамического равновесия.
Если в одной области газа средняя кинетическая энергия молекул больше, чем в другой, то с течением времени вследствие постоянных столкновений молекул происходит выравнивание средних кинетических энергий молекул, т.е. иными словами, выравнивание температур.
С макроскопической точки зрения явление теплопроводности заключается в переносе некоторого количества тепла от более нагретой части вещества к более холодной. Существование градиента температуры dT/dX является необходимым условием для возникновения теплопроводности.
Перенос энергии при теплопроводности подчиняется закону Фурье:
JE = - dT/dX, (1) где JE – плотность теплового потока – величина, определяемая энергией, переносимой в форме теплоты в единицу времени через единичную площадку, перпендикулярную направлению переноса (оси ОХ); - теплопроводность, dT/dX – градиент температуры (величина векторная), равный скорости изменения температуры на единицу длины Х в направлении нормали к этой площадке. Знак минус показывает, что при теплопроводности энергия переносится в направлении убывания температуры (поэтому знаки JE и dT/dX противоположны).
Теплопроводность численно равна плотности теплового потока при градиенте температуры, равном единице.
В стационарных условиях, когда за счет какого-либо внешнего источника энергии градиент температуры dT/dX поддерживается постоянным, тепловой поток также не изменяется со временем. В тех же случаях, когда газ (или другое тело), в котором существует градиент температуры, предоставлен самому себе, т.е. к нему извне не подводится энергия, теплопроводность приводит к выравниванию температуры. Такой процесс будет, конечно, нестационарным.
При рассмотрении явления теплопроводности газов с точки зрения молекулярно-кинетической теории можно показать, что = mnVCV /3 = VCV /3, (2) где CV – удельная теплоемкость газа при постоянном объеме (количество теплоты, необходимое для нагревания 1 кг газа на 1 К при постоянном объеме), - плотность газа, V - средняя скорость теплового движения молекул, - средняя длина свободного пробега молекул газа, m – масса одной молекулы, n – число молекул газа в единице объема.
Формула (2) позволяет выяснить характер зависимости коэффициента теплопроводности газа от его температуры и давления.
- Вопрос 1. Со и ск. Основные хар-ки мех-го движения. Прямолинейные и криволинейныое движение мт. Скорость и ускорение.
- Вопрос 2. Движение мт по окружности. Нормальное и тангенциальное ускорение. Связь угловых и линейных хар-к движения.
- Вопрос 3. Векторные величины. Сложение, вычитание и умножение векторов. Сила и масса. Законы Ньютона.
- Вопрос 4. Силы при криволинейном движении.
- Вопрос 5. Закон всемирного тяготения. Зависимость веса тела от высоты над уровнем моря и геог-кой широты. Гравитационное поле.
- Вопрос 6. Нормальное гравитационное поле и его аномалии.
- Вопрос 7. Гравитационные явления и процессы.
- Вопрос 8. Орбитальное движение Земли и ее осевое вращение. Неравномерности вращения Земли и их физическая природа.
- Вопрос 9. Приливообразующие силы и их геофизическая роль.
- Вопрос 10. Закон сохранения и изменения количества движения.
- Вопрос 11. Работа силы и мощность. Кинетическая и потенциальная энергия.
- 2) Потенциальная энергия тела массы m, находящегося в гравитационном поле другого тела массой м на расстоянии r0 от него.
- 3) Определим потенциальную энергию тела массой m, находящегося на небольшой высоте h над земной поверхностью.
- Вопрос 12. Гармоническое колебание и его хар-ки. Маятники.
- Вопрос 13. Энергия колеблющегося тела. Собственные колебания Земли. Сложение гармонических колебаний.
- Вопрос 14. Волна и ее хар-ки. Продольные и поперечные волны. Принцип Гюйгенса. Интенсивность волны.
- Вопрос 15. Звуковая волна. Хар-ки звука. Инфразвук и ультразвук. Принцип локации.
- Вопрос 16. Элементы механики жидкости. Основные определения. Уравнение неразрывности.
- Вопрос 17. Уравнение Бернулли и его применение для определения статического и динамического давления.
- Вопрос 18. Основные положения мкт строения вещества. Межмолекулярные силы. Агрегатное состояние вещества.
- Вопрос 19. Макроскопические системы. Термодинамическое равновесие. Равновесные и неравновесные процессы. Обратимые и необратимые процессы.
- Вопрос 20. Газовые законы (Бойля-Мариотта, Гей-Люсака, Авогадро). Уравнение состояния идеального газа.
- Вопрос 21. Барометрическая формула и распределение Больцмана.
- Вопрос 22. Явления переноса в газах и жидкостях.Диффузия в газах.
- Вопрос 23. Явление переноса. Телопроводность.
- Вопрос 24. Явления переноса в газах и жидкостях. Внутреннее трение (вязкость).
- Вопрос 44. Мпз. Магнитные полюса Земли. Элементы земного магнетизма. Магнитные карты изогон, изоклин и изодин.
- Вопрос 45. Межпланетное мп. Солнечный ветер. Магнитосфера Земли. Радиационные пояса Земли.
- Вопрос 46. Природа геомагнитного поля. Источники энергии геомагнитного поля. Мп в морской и океанической воде.
- Вопрос 47. Главное магнитное поле Земли и его аномалии.
- Вопрос 48. Главное и переменное мп Земли. Вариации мп и их природа. Магнитные бури.
- Вопрос 35. Геоэлектрическое поле Земли. Электрическая проводимость гидросферы, земной коры и её недр.
- Вопрос 36. Электрическая проводимость атмосферы, ионосферы. Ионосферные слои. Влияние ионосферы на распространение радиоволн.
- Вопрос 37. Электротеллурическое поле. Региональные и локальные эп земной коры. Вариации меридиональной и широтной напряженноти. Напряженность электротеллурического поля.