logo search
Шпоры 1 семестр

Вопрос 23. Явление переноса. Телопроводность.

В термодинамически неравновесных системах возникают особые необратимые процессы, называемые явлениями перено­са, в результате которых происходит пространственный перенос энергии, массы количества движения. К явлениям переноса относятся теплопроводность (обус­ловлена переносом энергии), диффузия (обусловлена переносом массы) и внут­реннее трение (обусловлено переносом количества движения). Для этих явлений перенос энергии, массы и количества движения всегда происходит в направ­лении, обратном их градиенту, т. е. систе­ма приближается к состоянию термоди­намического равновесия.

Если в одной области газа средняя кинетическая энергия молекул больше, чем в другой, то с течением времени вследствие постоянных столкновений молекул происходит выравнивание средних кинетических энергий молекул, т.е. иными словами, выравнивание температур.

С макроскопической точки зрения явление теплопроводности заключается в переносе некоторого количества тепла от более нагретой части вещества к более холодной. Существование градиента температуры dT/dX является необходимым условием для возникновения теплопроводности.

Перенос энергии при теплопроводности подчиняется закону Фурье:

JE = -  dT/dX, (1) где JE плотность теплового потока – величина, определяемая энергией, переносимой в форме теплоты в единицу времени через единичную площадку, перпендикулярную направлению переноса (оси ОХ);  - теплопроводность, dT/dX – градиент температуры (величина векторная), равный скорости изменения температуры на единицу длины Х в направлении нормали к этой площадке. Знак минус показывает, что при теплопроводности энергия переносится в направлении убывания температуры (поэтому знаки JE и dT/dX противоположны).

Теплопроводность  численно равна плотности теплового потока при градиенте температуры, равном единице.

В стационарных условиях, когда за счет какого-либо внешнего источника энергии градиент температуры dT/dX поддерживается постоянным, тепловой поток также не изменяется со временем. В тех же случаях, когда газ (или другое тело), в котором существует градиент температуры, предоставлен самому себе, т.е. к нему извне не подводится энергия, теплопроводность приводит к выравниванию температуры. Такой процесс будет, конечно, нестационарным.

При рассмотрении явления теплопроводности газов с точки зрения молекулярно-кинетической теории можно показать, что  = mnVCV /3 = VCV /3, (2) где CV – удельная теплоемкость газа при постоянном объеме (количество теплоты, необходимое для нагревания 1 кг газа на 1 К при постоянном объеме),  - плотность газа, V - средняя скорость теплового движения молекул,  - средняя длина свободного пробега молекул газа, m – масса одной молекулы, n – число молекул газа в единице объема.

Формула (2) позволяет выяснить характер зависимости коэффициента теплопроводности газа от его температуры и давления.