11.Работа силы и мощность. Кинетическая и
ПОТЕНЦИАЛЬНАЯ ЭНЕРГИЯ.
Под действием постоянной силы `F тело В может совершить некоторое перемещение Dr. Очевидно, что изменение скорости по модулю и перемещение возможно лишь в том случае, если проекция силы на направление перемещения тела отлична от нуля.
Рис.1.
Составляющая силы Fcosa называется вижущей силой. Нормальная составляющая не вызывает перемещения тела по пути S.
Для характеристики перемещающего действия силы вводится понитие работы. Работа равна произведению движущей силы на перемещение:
DА= |F| |Dr|cosa, т.е. (1)
DА= (`F ·D`r) -скалярное произведение векторов силы `F и перемещения D`r. Работа – величина скалярная.
Из (1) видно, что при 0<a<900 - работа положительна – сила вызывает перемещение тела; при 900<a<1800 – работа отрицательна – сила препятствует движению тела; при a = 900 – сила не совершает работы по перемещению тела. В частности, центростремительная сила, действующая на тело, равномерно вращающееся по окружности,
работы не совершает, т.к. `Fц.с.^`V. Если `F|| D`r, то DА = F Dr. Если тело перемещается под действием нескольких сил, то
совершаемая ими работа равна сумме работ всех этих сил (т.е. равна
работе результирующей этих сил)
DА= aDАi = a(`Fi D`r) (2)
Формула (1) применима лишь для ычисления работы постоянной силы на прямолинейном пути. Однако в большинстве случаев
траектории движущихся тел криволинейны, а силы, совершающие работу, изменяются по мере движения тел.
Чтобы найти работу переменной силы на криволинейном пути, весь путь разбивают на достаточно малые элементы. Каждый из
элементов должен быть настолько мал, чтобы его можно было считать приблизительно прямолинейным, а действующую силу - неизменной в любой точке данного элемента пути. (Однако для различных элементов
пути силы, вообще говоря, будут различными). Далее, для вычисления
работы на каждом из элементов пути уже можно воспользоваться формулой (1). Тогда
DАi= Fi Dri cosai .
Работа переменной силы на всем криволинейном пути будет:
А= aFiDricosai.
Поскольку число слогаемых конечное, то получится лишь приблизительная величина работы на пути. Чтобы увеличить точность,
необходимо n®µ или Dri®0 и найти предел этой суммы, что практически сводится к операции интегрирования. Следовательно,
Рис.2.
jРаботу силы на некотором пути S можно определить из графика, дающего зависимость действующей силы от длины проходимого пути S, рис. 2
Действительно, элементарная работа на участке dS будет dA = FsdS - численно равна заштрихованной площади , а работа на всем пути как сумма элементарных работ будет
равна сумме площадей всех тонких полосок, т.е. всей площади под кривой.
Единицей работы является джоуль.
1 Дж – работа, совершаемая силой 1Н при перемещении тела на расстояние 1м в направлении действия силы.
1Дж = 1 Н·м.
Мощность N измеряется отношением работы DА к промежутку времени Dt, за который она совершена: N = DA/Dt. (3)
В случае движения тела с постоянной скоростью`V под действием силы `F (преодолевающей сопротивление движению) мощность выражается формулой
N = DA/Dt = F Dr/Dt = FV.
Если же процесс работы протекает с течением времени неравномерно, то мощность определяется как отношение величины элементарной работы dA к элементарно малому отрезку времени dt, за
который эта работа совершается N = dA/dt (мгновенная мощность)
В системе СИ единица мощности ватт (Вт).
1Вт – мощность, при ДК‹_____которой за время 1с совершается работа 1 Дж.
1 Вт = 1 Дж/с. 1гВт = 100 Вт, 1кВт = 1000 Вт.
Мы рассмотрели физическую величину работу силы, которая является количественной мерой передачи движения телу или системе тел. Рассмотрим еще одну физическую величину энергию, которая является количественной мерой движения материальных тел и систем, единой для всех форм движения материи. Процесс
работы есть одна из форм передачи энергии от одного тела к другому. Поэтому работа может служить количественной мерой передаваемой энергии, она определяет изменение энергии тела.
Именно работа А, приложенной к телу внешней силы, равна изменению энергии этого тела DА= DЕ = Е2 – Е1. (4)
Энергия характеризует способность тела или системы тел совершать работу или другими словами, энергия – этол запас
работы, которую способно совершить тело (или система тел) вследствие того, что оно обладает определенным состоянием
движения. Энергия измеряется максимальной работой, которую при
определенных (заданных) условиях может совершить эта система (тело).
Энергия характеризует состояние системы, способность системы к совершению работы при переходе из одного состояния в другое.
Механическая энергия – однозначная функция состояния, т.е. данному состоянию тела соответствует одно и только одно значение его энергии. Для измерения энергии служат те же величины, что и для
измерения работы.
КИНЕТИЧЕСКАЯ ЭНЕРГИЯ.
Если под действием постоянной силы `F тело массы m перемещается на DХ, то сила совершает работу и энергия движущегося тела возрастает на величину проделанной работы. Если тело перемещается
по горизонтальной прямой, то m
DА= F Dx. `F X
Рис.3.
Используя 2-ой зак. Ньютона и выражение для перемещения при равноускоренном движении, получим
DА= mW Dx = mW( V0t + Wt2/2 ). (5)
Определим время из уравнения
V(t) = V0 + Wt ® t = (V – V0)/W и подставим его в (5)
DА= mW [V0(V – V0)/W + (V – V0)2/2W2 ] = mV2(t)/2 – mV0
2/2 (6)
Величину Ек = mV2/2 - наз.кинетической энергией.
Т.о., работа, совершаемая телом, равна изменению его
кинетической энергии.
DА= Ек1 – Ек0.
Кинетическая энергия увеличивается, когда А > 0 и уменьшается,
когда А<0. Например, силы трения совершают А<0.
Если в конце рассматриваемого перемещения тело останавливается (V(t) = 0), то совершенная максимальная работа равна
кинетической энергии тела в начале перемещения. Значит, работа силы трения является мерой изменения кинетической энергии.
Пользуясь уже применявшився выше риемом разбивки траектории тела на малые отрезки, несложно доказать, что формула (6) справедлива и в общем случае криволинейного пути и переменной силы.
Второй вид механической энергии –потенциальная энергия Еп –
определяется взаимным положением тел или частиц, находящихся под воздействием сил взаимодействия. Потенциальная энергия – это запас работы, которую могут совершить действующие на тело силы взаимодействия (например, силы тяжести или упругте силы) при перемещении этого тела из данного положения в конечное положение из которого дальнейшее его перемещение под действием тех же сил уже невозможно. Потенциальная энергия тела, занимающего какое-либо положение в пространстве, обычно находится путем вычисления
указанной работы действующих на него сил. Только при этом необходимо предварительно установить то конечное состояние тела, в
котором его потенциальная энергия принимается равной нулю.
В качестве примера определим: 1) потенциальную энергию
упругодеформированного тела (стержня). Она равна максимальной работе А, совершаемой силами упругости, восстанавливающими первоначальный размер и форму стержня: Еп= А.
Сила упругости равна F = ESDl ¤ l.
Эта сила является переменной величиной: она линейно зависит от удлинения Dl, изменяясь от нуля при Dl = 0 до `F. Поэтому можно считать, что при перемещении Dl действует средняя сила упругости
<F> = ( 0 + F )/2 = F/2.
Тогда A = <F>Dl = F Dl ¤2 = ES(Dl)2/2l0,
Следовательно Еп= к(Dl)2/2, (7)
где к = ES/l - коэффициент пропорциональности в законе Гука.
При всех других видах деформации потенциальная энергия тоже пропорциональна квадрату деформации (смещения).
- 1. Сист. Отсчета и сист. Координат. Основные хар-ки мех. Движения. Прямолин. И криволин. Движение мат. Точки. Скорость и ускорение.
- 2.Движение материал. Точки по окружности. Нормальное и тангенц.Ускор. Связь угл. И лин. Хар-к. Движ.
- 4.Силы при криволин. Движении.
- 5. Закон всемирного тяготения. Зависимость веса тела от высоты над уровнем моря и геогр. Шир. Гравит. Поле.
- 6. Нормальное гравитационное поле земли и его анамалии
- 7. Гравитационные явления и процессы.
- 8. Орбитальное движение земли и ее осевое вращение. Неравномерности вращение земли, их физическая природа.
- 9. Приливообразующие силы и их геофизическая роль.
- 10.Закон сохранения и изменения количества движения.
- 11.Работа силы и мощность. Кинетическая и
- 2) Потенциальная энергия тела массы m, находящегося в гравитационном поле другого тела массой м на расстоянии r0 от
- 3) Определим потенциальную энергию тела массой m, находящегося на небольшой высоте h над земной поверхностью.
- 12.Гармоническое колебание и его хар-ки. Математический, физический и пружинные маятник.
- 13.Энергия колеблющегося тела. Собственные колебания земли. Сложение гармонических колебаний.
- 14.Волна, ее хар-ки. Продольные и поперечные волны. Принцип гюйгенса. Интенсивность волны.
- 15.Звуковая волна, характеристики звука. Инфразвук и ультразвук. Принцип локации.
- 16.Элементымеханики жидкостей. Основные определения. Уравнение неразравности.
- 18.Осн.Положения молекулярно-кинетической теории строен. В-ва. Межмолекулярные силы. Агрегатные состояния вещества.
- 19.Макроскопические системы. Термодинам. Равновесие. Равновесные и неравновесные процессы. Обратимые и необратимые процессы.
- 20. Газовые законы (бщйля-мариотта, гей-люсака, авогадро). Уравнение состояния идеального газа.
- 21.Барометрическая формула и распред. Больцмана.
- 22. Явление переноса в газах и жидкостях. Диффузия в газа.
- 23.Явление переноса теплопроводность.
- 24. Явление переноса в газах и жидкостях. Внутреннее трение (вязкость).
- 26. Внутренняя энергия идеального газа. Работа и теплота. Закон сохранения энергии.Первое начало термодинамики.
- 27.Электрические заряды и электрическое поле. Закон кулона. Принцип суперрозиции. Напряженость электоростатического поля
- 28.Линии напряженности электростат поля. Поток вектора напряженности. Теор. Остраградского-гаусса
- 29.Примеры вычисления напряженности электрических полей с помощью теоремы остгоградского-гаусса
- 30. Потенциал и работа сил электростатического поля. Циркуляция напряжености электростатического поля вдоль замкнутого контура. Разность потенциалов.
- 31. Градиент потенциала. Связь между потенциалом и напряженностьяю электростатического поля в каждой точке поля.
- 32.Эквипотенциальные поверхности. Изображения сечения простейших электрических полей с помощью эквопотенциальных линий. Работа при перемещении электрического заряда по эквипотенциальнойт поверхности.
- 33. Вычисление потенциалов некоторых простейших электростатических полей (создаваемых точечным зарядом, в плоском и шаровом конденсаторе)
- 1 .Потенциал электрического поля точечного заряда q.
- 3. Шаровой конденсатор.
- 34. Геоэлектрическое поле земли. Электрическая проводимость гидросферы, земной коры и недр.
- 35.Электрическая проводимость атмосферы. Ионосфера, ионные слои. Влияние ионосферы на распространение радиоволн. Нормальное электрическое поле атмосферы. Техногенное воздействие на ионосферу
- 36.Электротеллурическое поле. Региональные и локальные электрические поля земной коры. Вариации мередиональной и широтной напряженности электротеллурического поля.
- 37.Изучение глубинного строения земли с помощью сейсмического зондирования.
- 38.Масса, форма, размеры и строение атмосферы. Слои атмосферы и зависимость т атмосферы от высоты.