logo search
Шпоры 1 семестр

Вопрос 17. Уравнение Бернулли и его применение для определения статического и динамического давления.

Пусть по наклонной трубе (или трубке тока) переменного сечения движется жидкость слева направо. Мысленно выделим область трубки, ограниченную сечениями S1 и S2 , в которых скорости течения V1 и V2 , рис. 1 из предыдущего параграфа.

Определим изменение полной энергии, происходящее в этой области за малый промежуток времени t. За это время масса жидкости, заключенная между сечениями S1 и S1 втекает в рассматриваемую область, а масса, заключенная между S2 и S2 вытекает из нее. Иных изменений в данной области не происходит. Поэтому изменение полной энергии Е равно разности полных энергий вытекающей и втекающей масс:

Е = ( Ек + Еп)2 – ( Ек + Еп) 1 или (1)

Е = mV22/2 + mgh2 - mV12 - mgh1 (2)

В соответствии с законом сохранения энергии найденное изменение энергии равно работе А внешних сил (давления) по перемещению массы m: Е = А. (3)

Определим эту работу. Внешняя сила давления F1 совершает работу А1 по перемещению втекающей массы на пути V1t, в то же время вытекающая масса на пути V2t совершает А2 против внешней силы F2. Поэтому А1 = F1V1t; A2 = - F2V2t («-» т.к. сила направлена против перемещения), а искомая работа А = А1 + А2 = F1V1t - F2V2t.

Учитывая, что F1 = p1S1 и F2 = p2S2 , получим А = p1S1 V1t - p2S2 V2t, но S1 V1t =S2 V2t = V, т.к. жидкость не сжимается.

Поэтому А = р1V – p2V (4)

Объединяя (2) и (4), получим mV22/2 + mgh2 + p2V = mV12/2 + mgh1 + p1V |:V V22/2 + gh2 + p2 = V12/2 + gh1 + p1 . (m/V =)

Поскольку сечения S1 и S2 выбраны произвольно, можно окончательно написать V2/2 + gh + p = const - уравнение Бернулли (1700 – 1782г., петербургский академик). (5)

V2/2 –удельная кинетическая энергия жидкости

gh – удельная потенциальная энергия жидкости

р - удельная энергия жидкости, обусл. силами давления

При установившемся движении идеальной несжимаемой жидкости сумма удельной энергии давления и кинетической и потенциальной удельных энергий остается постоянной на любом поперечном сечении потока. Единицей давления 1 Па = 1Н/м2 = 1 Н м/м3 = Дж/м3.

Следовательно, уравнение Бернулли выражает закон сохранения энергии (удельной). Все члены (5) можно рассматривать как давления, причем р называется статическим, V2/2 –динамическим, gh –гидравлическим давлением (напором).

Следовательно,в установившемся потоке идеальной несжимаемой жидкости полное давление (напор) , слагающееся из динамичес-кого, гидравлического и статического давлений , постоянно на любом поперечном сечении потока (уравнение Бернулли). Для горизонтальной трубки тока (h1 = h2) уравнение Бернулли примет вид V2/2 + p =const.

Из уравнений Бернулли и неразрывности следует, что в местах сужения трубопровода скорость течения жидкости возрастает, а статическое давление понижается. Уравнения (1) – (5) применимы и для газа, поскольку, как показывает теория и опыт, при скоростях движения газа, меньших скорости распространения звука в нем, сжимаемостью газа можно пренебречь.

Уравнение Бернулли является одним из основных законов механики движения жидкости и газов, имеющих большое прикладное значение. Примеры: 1) гидротурбина (потенциальная энергия давления воды в узком сопле переходит в кинетическую энергию, за счет которой рабочее колесо приводится во вращение) 2) гидротаран, 3)аэрация почвы, 4)карбюратор двигателей, 5) пульверизатор, 6)сталкивание двух параходов, близко идущих одним курсом.

Давление в движущейся жидкости можно измерить с помощью неподвижной манометрической трубки (зонд), если ее соприкасающееся с текущей жидкостью отверстие площади S ориентировано параллельно направлению движения жидкости, рис. 1.

Действительно, элементарно тонкий слой жидкости в манометрической трубке, примыкающий к ее отверстию, находится в покое. Значит, сила давления F =pS, действующая со стороны текущей жидкости, уравновешивается силой, с которой столб жидкости в трубке высотой h действует на него в противоположном направлении (вниз) и которая равна весу столба жидкости F =  ghS (внутри трубки, у ее закрытого конца, над поверхностью жидкости вакуум). Т.о., Р = gh, т.е. давление р в той точке потока жидкости, на уровне которой находится отверстие в манометрической трубке, равно весу столба жидкости, находящейся в трубке, площадь сечения которого равна единице.

Давление в движущейся жидкости в соответствии с законом Бернулли связано со скоростью ее частиц. В более широких участках трубки, где скорость жидкости мала, давление жидкости будет по величине большим, чем в более узких участках той же трубки тока, где скорость жидкости больше (трубка Вентура).

Совсем другое давление будет измерять в движущейся жидкости неподвижная манометрическая трубка, изогнутая под прямым углом, так что ее отверстие, находящееся в жидкости, ориентировано навстречу потоку и его площадь перпендикулярна к линиям тока (трубка Пито), рис. 2.

Пусть вдали от манометрической трубки давление и скорость жидкости равны р и V . В сечении же, совпадающем с отверстием манометрической трубки, скорость жидкости V = 0, т.к. жидкость, достигшая отверстия, здесь затормаживается. Обозначим давление в сечении отверстия р, то в соответствии с законом Бернулли для двух данных сечений трубки тока получим: Р + V2/2 = p, т.к. (h и h равны). (6)

Возрастание давления у отверстия изогнутой трубки обусловливается сжатием затормаживаемой здесь жидкости. Из (6) можно определить V жидкости V = 2(р - р)/ (7)