logo
Пять нерешенных проблем науки

Более элементарные по сравнению с атоллами

Чтобы разобраться с кварками, следует обратиться к атомам. Изучение Эрнстом Резерфордом α-частиц привело в начале XX века к открытию ядра (см. гл. 1). Экспериментальные и теоретические изыскания физиков позволили продвинуться вглубь тех кирпичиков, что лежат в основе Вселенной. К 1920 году определились со строением атома, он оказался состоящим из ядра с положительно заряженными протонами и нейтральными нейтронами (хотя в опытах еще не было подтверждено существование нейтронов в то время), вокруг которого обращались электроны.

Целостность этой картины вскоре нарушилась. Для объяснения излучения света нагретыми телами немецкий физик Макс Планк в 1900 году выдвинул предположение, что световая энергия передается в виде порций, названных квантами, а не любым количеством, как думали ранее (вроде звеньев, а не сплошной ленты). По мнению Планка, это было всего лишь математической операцией, позволившей решить возникшие трудности. Однако в 1905 году Альберт Эйнштейн отнесся к идее Планка иначе. Он показал, что если свет действительно имеет квантовую природу, то этим объясняется загадка фотоэлектрического эффекта.

Фотоэлектрический эффект проявляется при падении света на металл, что вызывает выход электронов из металла. Однако испускание электронов прекращается при свете со слишком малой частотой независимо от мощности источника света. Эйнштейн заключил, что свет действует подобно частице, передавая свою энергию электрону и тем самым высвобождая его. Кроме того, отношение Планка, связывавшее энергию с частотой, объясняло отсутствие электронов при низкой частоте падающего света. Световым фотонам просто не хватало энергии для образования свободных электронов. Действия света больше напоминали поведение частицы, нежели волны.

Распространение представления о квантах на атомы в 1920-х годах привело к созданию квантово-механической модели атома. В данной теории электронам как частицам приписывались волновые свойства. Квантово-механические предсказания относительно цвета света, испускаемого возбужденными атомами, согласовывались с данными спектроскопии, так что теория выдержала опытную проверку. Теперь симметрия была полной. Свет мог проявляться в виде волны или частицы, а электрон (протон или нейтрон) — в виде частицы или волны, в зависимости от проводимых опытов.

Одним из следствий квантовой механики стал принцип неопределенности Гейзенберга, согласно которому существует предел произведения неопределенности положения частицы и неопределенности ее импульса и соответствующий предел произведения неопределенности энергии и неопределенности времени.

Принцип этот означает: чем точнее установлено местоположение электрона, тем менее точно можно узнать его импульс, и наоборот. Предел крайне мал, и его действие почти не отражается на измерениях объектов обычных размеров. Однако философские последствия велики: существует предел нашим знаниям. Многие ученые, включая Альберта Эйнштейна, не могли примириться с таким предположением. И все же оно следует из удостоверяемой гипотезы, которую приходится принять.

Далее, квантовую механику потребовалось объединить с другой революционной идеей начала XX века — специальной теорией относительности Эйнштейна. В 1928 году это сделал британский физик Поль Дирак. Его новая теория оказалась не только исчерпывающей, она приводила к любопытному следствию: предсказывала существование новой частицы, подобной электрону, но положительно заряженной, которая получила название антиэлектрона, или позитрона (положительного электрона).