Потеря атмосферного газа
Планета теряет газ пятью различными путями: тепловая утечка, сжижение (конденсация), бомбардировка, образование кратеров и (или) химические реакции.
Тепловая утечка. Запускаемые с Земли космические корабли весьма зрелищно покидают родную планету. Газовые молекулы тоже покидают Землю, но не столь шумно. Все на планете удерживается силой ее тяготения, которое у поверхности определяется ее массой и поперечником.
На каждой планете для преодоления ее гравитационных пут тело должно разогнаться до определенной, так называемой второй космической, скорости.
Планета | 2-я космическая скорость, км/с |
Марс | 5 |
Венера | 10,4 |
Земля | 11,4 |
Атмосферные газы в зависимости от температуры и массы молекул имеют различные скорости. При более высокой температуре молекулы движутся быстрее: легкие — быстрее тяжелых.
Как видно из таблицы на с. 160-161, Марс вследствие тепловой утечки быстро расстанется с легкими газами вроде водорода и гелия, но сможет удержать двуокись углерода. Венере и Земле проще удержать свои газы.
Сжижение. Испарение жидкостей и возгонка твердых тел происходит при высокой температуре, но возможен и обратный процесс: при низкой температуре атмосферные газы в состоянии сжижаться с образованием жидкого или даже твердого состояния.
Наиболее показателен в этом отношении Марс, где двуокись кислорода на полюсах зимой сжижается, образуя твердую углекислоту, то есть сухой лед.
Сжижение происходит даже на Луне. В 1998 году орбитальный аппарат Lunar Prospector обнаружил замерзшую воду в глубоких кратерах близ обоих лунных полюсов. Лед, видимо, попал туда с хвоста комет и сохранился в недоступных солнечным лучам местах. Миллиарды лет назад лед мог оказаться там, где лежит и ныне.
Бомбардировка в состоянии породить атмосферу на планете, у которой ее изначально не было. Но она может и забирать газ у уже имеющейся на планете атмосферы. Солнечный ветер в силах помочь утечке газов в верхних слоях атмосферы. Солнечные фотоны способны разлагать молекулы на более мелкие составляющие (в ходе так называемой диссоциации), которые затем из-за более легкой массы покидают планету.
Образование кратеров. Падающие на планету более крупные тела тоже способны придать молекулам газа достаточно энергии, чтобы те покинули планету. Особо уязвимы в данном случае более мелкие планеты с меньшей, второй космической скоростью.
Химические реакции. В зависимости от химической активности молекул реакции между газами и поверхностными скальными породами или жидкостями могут приводит к их связыванию.
Химические реакции на раннем этапе образования нашей планеты связали значительное количество углекислого газа в известняки, удалив тем самым много этого газа из ее атмосферы.
- Наука ≠ техника
- Научный метод в действии
- Нерешенные проблемы
- Более элементарные по сравнению с атоллами
- Спасительные космические лучи
- Четыре силы
- Осколки частиц, или Трудное разделение
- Вмешательство политики
- Физика возвращается к повседневным заботам
- Появление кварков
- Теория наносит ответный удар: объединение
- Стандартная модель
- Проверка стандартной модели
- Теневая сторона стандартной модели
- Проблема происхождения массы, известная как проблема полей Хиггса
- Нужна новая физика
- Необходим новый язык?
- Решение головоломки: как, кто, где и когда?
- Становление химических систем
- Предположения о происхождении жизни
- Нынешняя жизнь: клеточные структуры
- Отправления клетки
- Предсолнце
- Наше Солнце
- Появление рнк
- Рнк-мир
- Альтернативы рнк-миру
- Сложности
- Решение головоломки: как, кто и почему?
- Биология
- E. Coli
- Опероны е. Coli
- Оперон днк — рнк — белки
- От прокариот к эукариоталл
- Модельные организмы
- Физика — биология — химия
- Секвенирование генома человека
- Угроза патентования
- Секвенирование дроблением
- План на вторую половину игры
- Последствия и бедствия
- Решение головоломки: почему, как, кто и где, когда?
- Глава пятая Геология
- Погода на Земле
- Воздух местного производства
- Получение атмосферного газа
- Потеря атмосферного газа
- Получение или утрата атмосферного газа
- Погода и климат: гипотезы (весьма добротные), прогнозы (не столь добротные)
- Решение головоломки: как и где?
- Астрономия
- Содержимое Вселенной
- Измерение межзвездных расстояний
- Галактики: первые теории и наблюдения
- Космологический вклад Эйнштейна
- Чем крупнее телескопы, тем больше расстояния до звезд
- Одна большая Галактика или многочисленные обособленные галактики
- Вселенная галактик
- Столкнувшись с неожиданным: ускорение Вселенной
- В темноте рассуждать о темной энергии
- Решение головоломки: где, когда, как и кто?
- 1. Антивещество
- 2. Ускорители
- 4. Внеземная жизнь
- 1. Какова скорость образования в нашей Галактике звезд, подходящих для создания пригодных для жизни планет ?
- 2. Какова доля таких звезд, имеющих планеты ?
- 3. Какова доля планет, обращающихся вокруг своих звезд в пределах, где возможно зарождение жизни ?
- 4. Какова доля благоприятно расположенных планет, где действительно зародилась жизнь?
- 5. Какова доля форм жизни, приведших к возникновению разума ?
- 6. Какова доля разумных форм жизни, способных создать технические средства для передачи поддающихся обнаружению сигналов?
- 7. В течение скольких лет разумная цивилизация передает в космос поддающиеся обнаружению сигналы?
- 5. Аминокислоты
- 6. Построение модели днк
- 7. Кодоны
- 8. Укладка белков
- 10. Парниковые газы
- 11. Земля: история недр
- 12. Теория хаоса
- 13 .Предсказание землетрясений
- 15. Труды Эйнштейна: помимо теории относительности
- 16. «Большой взрыв»
- Глава 1. Видение науки
- Глава 2. Физика. Почему одни частицы обладают массой, а другие нет?
- Глава 3. Химия. Какого рода химические реакции подтолкнули атомы к образованию первых живых существ?
- Глава 4. Биология. Каково строение и предназначение протеома?
- Глава 5. Геология. Возможен ли точный долговременный прогноз погоды?
- Глава 6. Астрономия. Почему Вселенная расширяется со все большей скоростью?