47. Резонансные явления в электроустановках зданий.
Одним из малоизученных явлений, влияющих на качество питающего напряжения, в том числе и у конечных электропотребителей, является резонанс токов (параллельный резонанс) в электроустановках зданий. Это опасное явление возникает при наличии и возрастании доли нелинейных электропотребителей и одновременном практически повсеместном использовании установок компенсации реактивной мощности, подключенных к шинам низкого напряжения трансформатора.
Чтобы говорить о явлении резонанса более предметно, необходимо рассмотреть причины его возникновения. Резонанс связан с работой силовых трансформаторов и установок компенсации реактивной мощности. В общем представлении это резонансный контур. В этой схеме имеется цепь с двумя параллельными ветвями: одна – с сопротивлением и индуктивностью (параметры обмоток трансформатора), а другая – с емкостью установки компенсации реактивной мощности. Для этой цепи наступает резонанс, когда x = xL xC = 0, или xL = xC. Угловая частота, при которой наступает резонанс, называется резонансной угловой частотой. Применительно к условиям действующей электроустановки здания можно сказать, что установка компенсации реактивной мощности является в контуре емкостью, а трансформатор – индуктивностью. Таким образом, индуктивность обмоток трансформатора, а также количество включенных конденсаторов на УКРМ и определяют резонансную частоту рассматриваемой цепи. Резонанс, возникающий на шинах трансформатора, приводит к резкому увеличению тока и изменению его гармонического состава в резонансном контуре, кроме того, при резонансе наблюдается ухудшение качества питающего напряжения на шинах низкого напряжения трансформатора. Рассмотрим более подробно последствия, которые могут возникать в электроустановке здания при возникновении резонансных явлений:
А) Ухудшение качества питающего напряжения,т.е. увеличение коэффициента искажения синусоидальности кривой напряжения, а также коэффициентов n-й гармонической составляющей напряжения.
Б) Влияние резонанса на условия работы силовых трансформаторов. Он приводит к значительному повышению температуры элементов трансформатора.
В) Резонанс и установки компенсации реактивной мощности. Резонансный ток является несинусоидальным и, так же как и в случае с трансформатором, негативно влияет на конденсаторные батареи в УКРМ, вызывая их дополнительный нагрев. Следствием этого являются преждевременный выход из строя УКРМ, перегрев, вспучивание, а иногда и взрывы конденсаторных батарей.
Для ограничения негативных последствий явления резонанса нужно выяснить, насколько необходима постоянная работа установок компенсации реактивной мощности в электроустановке здания.
- 1. Общая характеристика систем электроснабжения.
- 2. Этапы формирования Единой энергетической системы страны
- 3 Основные причины и результаты реформирования электроэнергетики России
- 4. Вопросы, решаемые в процессе проектирования систем электроснабжения. Основные требования при проектировании и эксплуатации электрических станций, подстанций, сетей и энергосистем.
- 5. Нормы технологического проектирования нтп эпп-94. Область применения и общие требования к проектированию.
- 6. Нормы технологического проектирования нтп эпп-94. Основные источники питания промышленных предприятий.
- 7. Нормы технологического проектирования нтп эпп-94. Электрические сети 110-330 кВ.
- 8. Электрические сети 6-10 кВ. Режимы работы, тенико-экономичкский характеристики и области применения
- 9. Выбор типа, числа и мощности силовых трансформаторов Основные положения
- 10. Выбор мощности силовых трансформаторов при несимметричной нагрузке. Схемы соединения обмоток.
- 11. Проверка силовых трансформаторов на перегрузочную способность. Аварийная и систематическая перегрузки.
- 12. Определение потерь мощности и электроэнергии в автотрансформаторах.
- 13Определение потерь мощности и электроэнергии в силовых трансформаторах
- 14. Определение экономически целесообразного режима работы трансформаторов
- 15. Выбор числа трансформаторных подстанций на предприятии. Применение напряжения 20 кВ.
- 16. Генплан предприятия. Особенности выбора места гпп и рп на генплане предприятия.
- 17. Учет особенности генплана предприятия при проектировании систем эпп
- 18. Особенности проектирования гпп и рп в схемах эпп
- 19. Общие принципы построения схем внутрицехового и внутризаводского электроснабжения.
- 20. Характерные схемы электрических сетей внешнего электроснабжения
- 21 Характерные схемы электрических сетей внутреннего электроснабжения
- 22. Типовые схемы электроснабжения предприятий различных отраслей промышленности.
- 23. Распределение электрической энергии до 1000 в. Порядок проектирования.
- 24. Схемы присоединения высоковольтных электроприёмников.
- 25. Картограммы нагрузок. Назначение, особенности построения.
- 26. Определение уцэн и определение зоны рассеяния уцэн.
- 27. Основной состав оборудования, используемого в сетях выше 1000 в. Назначение и современные типы.
- 28 Нагрузочная способность и выбор параметров основного электрооборудования
- 29 Основное содержание рд 153-34.0-20.527-98.
- 30. Назначение и особенности применения сдвоенных реакторов в системе эпп.
- 31. Коммерческий и технический учет электрической энергии. Электробаланс предприятия. Аскуэ.
- Автоматизированная система коммерческого учета электроэнергии предназначена для:
- 32 Методика измерения сопротивления изоляции электроустановок, аппаратов, вторичных цепей, электропроводок напряжением до 1000 в
- 33 Методика испытания средств защиты
- 34 Основные принципы автоматизации и диспетчеризации электроснабжения.
- 35. Режимы напряжений в сетях промышленных предприятий. Выбор рационального напряжения электроснабжения
- 36. Нормальные требования к качеству напряжения. Методы и средства кондиционирования.
- 37. Самозапуск трехфазных электродвигателей. Основные положения.
- 38. Последовательность расчета самозапуска.Выбег и разгон эд при самозапуске
- 39. Особенности пуска и самозапуска синхронных двигателей. Ресинхронизация сд.
- 40. Токи включения и уровни напряжений при самозапуске
- 41. Режимы реактивной мощности в системах эпп. Основные определения и положения
- 42. Мероприятия по уменьшению реактивных нагрузок.
- 43. Общая методика выбора устройств компенсации реактивных нагрузок.
- 44. Устройства компенсации реактивной мощности. Краткое описание и сравнительная характеристика
- 45. Синхронные двигатели (компенсаторы) и конденсаторные установки. Область и особенности применения.
- 46. Установки компенсации реактивной мощности. Порядок проектирования.
- 47. Резонансные явления в электроустановках зданий.
- 48. Новые методы и технические средства использования возобновляемых источников энергии в производственных процессах
- 49. Энергосбережение при передаче и распределении электроэнергии. Основные мероприятия.
- 50 Основные задачи развития электроэнергетических систем
- 52 Общие принципы оптимизации систем электроснабжения с учетом надежности. Критерии оптимальности.
- 53 Информационное обеспечение задач оптимизации сэс
- 54. Физическое и математическое моделирование. Свойства моделей.
- 57 Типы систем, их основные свойства и особенности
- 58 Свойства и особенности развития производственных (энергетических систем)
- 59 Оптимизация и эффективность производственных систем
- 60. Основные понятия теории планирования экспериментов