46. Установки компенсации реактивной мощности. Порядок проектирования.
КРМ — это комплекс мер, позволяющий добиться потребления реактивной мощности питающей сети с реактивной.
К устройствам КРМ относятся: Кондесаторные батареи (БСК) ,Шунтирующие реакторы(ШР);Фильтры высших гармоник;Статические тиристорные компенсаторы (СТК).
БСК предназначены для выдачи реактивной мощности(рм) в систему. Снижение перетоков рм в сети приводит к снижению потерь активной энергии, снижению потерь U,
ШР потребляют рм. Вакуумно-реакторные группы применяются для ступенчатого автоматического регулирования U, как правило, в узлах с повышенным U.
Фильтрокомпенсирующие устройства предназначены для снижения гармонических искажений Uи компенсации рм нагрузок потребителей в сетях электроснабжения пром предприятий. СТК могут работать как на выдачу, так и на потребление рм.
Компенсацию реактивной мощности по опыту эксплуатации производят до получения значения cosφк = 0,92 ... 0,95.
Задавшись cos φк из этого промежутка, определяют tgφк.
Значения Рм,, tgφ выбираются по результату расчета нагрузок из «Сводной ведомости нагрузок».
Задавшись типом КУ, зная Qк.р. и напряжение, выбирают стандартную компенсирующую установку, близкую по мощности.
1. При проектировании электроустановок необходимо предусматривать мероприятия по снижению потребления реактивной мощности, а именно:
а) не допускать выбора электродвигателей и трансформаторов с необоснованно заниженной нагрузкой; б) для нерегулируемых электроприводов с постоянным режимом работы выбирать синхронные двигатели, если это возможно по техническим и экономическим условиям; в) использовать другие технические средства, обеспечивающие повышение технико-экономических показателей системы электроснабжения путем воздействия на потребление и генерацию реактивной мощности.
2. Проектирование рекомендуется вести с учетом динамики роста нагрузки и поэтапного развития систем электроснабжения.
3. При выборе средств компенсации, устанавливаемых в электрических сетях потребителей электроэнергии:
а) экономически или технически обоснованное значение реактивной мощности, которая может быть передана из энергосистемы в режиме ее наибольшей активной нагрузки в сеть электроустановки; б) значение реактивной мощности, которая может быть передана из энергосистемы в режиме ее наименьшей активной нагрузки в сеть электроустановки; в) значение реактивной мощности, которая может быть передана из энергосистемы в послеаварийных режимах в сеть электроустановки
4. При выборе средств компенсации необходимо:
а) учитывать потери реактивной мощности в элементах сети и реактивную мощность, генерируемую воздушными линиями, токопроводами и кабельными линиями с номинальными напряжениями выше 20 кВ, а для кабельных сетей значительной протяженности — также и 6 — 20 кВ; б) определять целесообразную степень использования реактивной мощности генераторов местных электростанций и синхронных двигателей для сетей напряжением как 6 — 20, так и до 1.кВ;
в) выбирать способ управления компенсирующими устройствами (ручное или автоматическое), параметр регулирования (напряжение, реактивная мощность, время и.т.д.
5. При технико-экономических расчетах стоимости потерь электроэнергии и активной мощности должны определяться по замыкающим затратам.
6. При выборе средств компенсации необходимо учитывать, что наибольший экономический эффект достигается при их размещении в непосредственной близости от потребляющих реактивную мощность электроприемников.
Передача реактивной мощности из сети 6 — 35 кВ в сеть напряжением до 1 кВ во многих случаях оказывается экономически невыгодной, если это приводит к увеличению числа цеховых трансформаторов.
7. Распределять конденсаторные установки между сетями 6 —20 и сетями напряжением до 1 кВ следует на основании технико-экономического расчета.
Общая методика выбора устройств компенсации реактивных нагрузок
1. Выбор типа, мощности, места установки и режима работы компенсирующих устройств 2. одновременно со всеми элементами питающих и распределительных сетей.
3. Выполнение технических требований должно обеспечивать:
4. Критерием экономичности является минимум приведенных затрат,;
5. Источники реактивной мощности могут быть трех типов: а) генераторы электростанций и синхронные двигатели; б) ВЛ и КЛ электрических сетей; в) дополнительно устанавливаемые компенсирующие устройства — синхронные компенсаторы, вентильные установки специального назначения и др.
6. Предусмотренные в утвержденном проекте компенсирующие устройства устанавливаются в обязательном порядке;
7. Выбор средств компенсации должен производиться для режима наибольшего потребления реактивной мощности в сетях проектируемой установки.
8. Энергосистема должна задавать организации, проектирующей присоединяемую к сети энергосистемы электроустановку, значения величин реактивной мощности, передаваемых из сети системы для режимов наибольшей и наименьшей активных нагрузок системы, а также для послеаварийных режимов.
9. Для наиболее экономичного использования компенсирующих устройств некоторая их часть должна иметь устройства регулирования реактивной мощности.
10. При выборе средств компенсации следует учитывать, что наибольший экономический эффект достигается при их размещении в непосредственной близости от потребляющих реактивную мощность электроприемников. Передача реактивной мощности из сети 6—35 кВ в сеть до 1000 В экономически невыгодна, если требует увеличения числа цеховых трансформаторов. Для электроустановок небольшой мощности, присоединяемых к сетям 6—10 кВ, экономически оправдана компенсация реактивной мощности на стороне низкого напряжения (до 1 кВ).
11. Нерегулируемые конденсаторные установки в сетях до 1000 В должны размещаться в цехах у групповых распределительных пунктов, если окружающая среда допускает такую установку. Установка конденсаторных батарей на стороне 6—10 кВ цеховых подстанций не рекомендуется.
- 1. Общая характеристика систем электроснабжения.
- 2. Этапы формирования Единой энергетической системы страны
- 3 Основные причины и результаты реформирования электроэнергетики России
- 4. Вопросы, решаемые в процессе проектирования систем электроснабжения. Основные требования при проектировании и эксплуатации электрических станций, подстанций, сетей и энергосистем.
- 5. Нормы технологического проектирования нтп эпп-94. Область применения и общие требования к проектированию.
- 6. Нормы технологического проектирования нтп эпп-94. Основные источники питания промышленных предприятий.
- 7. Нормы технологического проектирования нтп эпп-94. Электрические сети 110-330 кВ.
- 8. Электрические сети 6-10 кВ. Режимы работы, тенико-экономичкский характеристики и области применения
- 9. Выбор типа, числа и мощности силовых трансформаторов Основные положения
- 10. Выбор мощности силовых трансформаторов при несимметричной нагрузке. Схемы соединения обмоток.
- 11. Проверка силовых трансформаторов на перегрузочную способность. Аварийная и систематическая перегрузки.
- 12. Определение потерь мощности и электроэнергии в автотрансформаторах.
- 13Определение потерь мощности и электроэнергии в силовых трансформаторах
- 14. Определение экономически целесообразного режима работы трансформаторов
- 15. Выбор числа трансформаторных подстанций на предприятии. Применение напряжения 20 кВ.
- 16. Генплан предприятия. Особенности выбора места гпп и рп на генплане предприятия.
- 17. Учет особенности генплана предприятия при проектировании систем эпп
- 18. Особенности проектирования гпп и рп в схемах эпп
- 19. Общие принципы построения схем внутрицехового и внутризаводского электроснабжения.
- 20. Характерные схемы электрических сетей внешнего электроснабжения
- 21 Характерные схемы электрических сетей внутреннего электроснабжения
- 22. Типовые схемы электроснабжения предприятий различных отраслей промышленности.
- 23. Распределение электрической энергии до 1000 в. Порядок проектирования.
- 24. Схемы присоединения высоковольтных электроприёмников.
- 25. Картограммы нагрузок. Назначение, особенности построения.
- 26. Определение уцэн и определение зоны рассеяния уцэн.
- 27. Основной состав оборудования, используемого в сетях выше 1000 в. Назначение и современные типы.
- 28 Нагрузочная способность и выбор параметров основного электрооборудования
- 29 Основное содержание рд 153-34.0-20.527-98.
- 30. Назначение и особенности применения сдвоенных реакторов в системе эпп.
- 31. Коммерческий и технический учет электрической энергии. Электробаланс предприятия. Аскуэ.
- Автоматизированная система коммерческого учета электроэнергии предназначена для:
- 32 Методика измерения сопротивления изоляции электроустановок, аппаратов, вторичных цепей, электропроводок напряжением до 1000 в
- 33 Методика испытания средств защиты
- 34 Основные принципы автоматизации и диспетчеризации электроснабжения.
- 35. Режимы напряжений в сетях промышленных предприятий. Выбор рационального напряжения электроснабжения
- 36. Нормальные требования к качеству напряжения. Методы и средства кондиционирования.
- 37. Самозапуск трехфазных электродвигателей. Основные положения.
- 38. Последовательность расчета самозапуска.Выбег и разгон эд при самозапуске
- 39. Особенности пуска и самозапуска синхронных двигателей. Ресинхронизация сд.
- 40. Токи включения и уровни напряжений при самозапуске
- 41. Режимы реактивной мощности в системах эпп. Основные определения и положения
- 42. Мероприятия по уменьшению реактивных нагрузок.
- 43. Общая методика выбора устройств компенсации реактивных нагрузок.
- 44. Устройства компенсации реактивной мощности. Краткое описание и сравнительная характеристика
- 45. Синхронные двигатели (компенсаторы) и конденсаторные установки. Область и особенности применения.
- 46. Установки компенсации реактивной мощности. Порядок проектирования.
- 47. Резонансные явления в электроустановках зданий.
- 48. Новые методы и технические средства использования возобновляемых источников энергии в производственных процессах
- 49. Энергосбережение при передаче и распределении электроэнергии. Основные мероприятия.
- 50 Основные задачи развития электроэнергетических систем
- 52 Общие принципы оптимизации систем электроснабжения с учетом надежности. Критерии оптимальности.
- 53 Информационное обеспечение задач оптимизации сэс
- 54. Физическое и математическое моделирование. Свойства моделей.
- 57 Типы систем, их основные свойства и особенности
- 58 Свойства и особенности развития производственных (энергетических систем)
- 59 Оптимизация и эффективность производственных систем
- 60. Основные понятия теории планирования экспериментов