Сегнетоэлектрики
Входы: температура.
Выходы: поляризация.
Графическая иллюстрация:
Рис. 2.46. Схематическое изображение элементарной ячейки сегнетоэлектрика в полярной фазе (а и б) и в неполярной фазе (в); стрелки указывают направление электрических дипольных моментов.
Сущность:
Сегнетоэлектрики - кристаллические диэлектрики, в которых самопроизвольно возникает поляризация, но только в некотором интервале температур. Температура, при которой происходит исчезновение спонтанной поляризации, называется сегнетоэлектрической температурой Кюри. При температуре Кюри в сегнетоэлектриках наблюдается максимум диэлектрической проницаемости, а ее изменение вблизи этой температуры происходит скачками (сравнение с эффектами Гопкинса и Баркгаузена). Выше температуры Кюри сегнетоэлектрик переходит в пароэлектрическое состояние.
Сегнетоэлектрики - это электрические аналоги ферромагнетиков, которые, как известно, самопроизвольно намагничиваются и имеют точку Кюри. Поэтому сегнетоэлектрики иногда называют ферроэлектриками. Они отличаются большой диэлектрической проницаемостью, высоким пьезоэффектом наличием петли диэлектрического гистерезиса, интересными электрооптическими свойствами.
Кроме сегнетоэлектриков, которые можно расматривать как совокупность паралельноориентированных диполей, есть вещества с антипаралельным расположением диполей. Их называют антисегнетоэлектриками.
Сегнетоферромагнетики – это сегнетоэлектрики, в которых наблюдается упорядочение магнитных моментов. В них могут существовать различные виды электрического и магнитного упорядочения: сегнетоэлектричество или антисегнетоэлектричество с ферромагнитизмом, антиферромагнетизмом или ферромагнетизмом.
Сегнетоэлектрические и ферромагнитные точки Кюри у таких веществ не совпадают. Но в сегнетоэлектрической точке Кюри наблюдается аномалия магнитных свойств, а в магнитной - аномалия диэлектрических. Кроме того, при наложении магнитного (электрического) поля наблюдается изменение электрической (магнитной) проницаемости - магнитоэлектрический эффект.
При наложении достаточно сильного электрического поля антисегнетоэлектрики могут перейти в сегнетоэлектрическое состояние При таком "вынужденном" фазовом переходе в сильном переменном поле наблюдаются двойные петли гистерезиса. Kритическое поле, при котором в антисегнетоэлектриках возникает сегнетоэлектрическая фаза, уменьшается при увеличении температуры. В некоторых случаях с ростом температуры наблюдаются переходы из сегнетоэлектрического состояния в антисегнетоэлектрическое, а затем в пароэлектрическое.
Наложение электрического поля вдоль полярной оси увеличивает устойчивость сегнетоэлектрического состояния, расширяет область температур, в которой существует спонтанная поляризация. В антисенгетоэлектриках в сильных электрических полях температура Кюри понижается.
Некоторые сигнетоэлектрики выше точки Кюри обладают пьезоэффектом. Приложение к таким веществам в параэлектрической фазе механического напряжения по эффекту эквивалентно приложению напряжения.
При нагреве сегнетоэлектрического кристалла происходит уменьшение спонтанной поляризации, что эквивалентно появлению пироэлектрического заряда на поверхности кристалла.
Наличие спонтанной поляризации (электрического дипольного момента в отсутствии электрического поля) есть отличительная особенность более широкого класса диэлектриков, называемых пироэлектриками. В отличие от других пироэлектриков, спонтанная поляризация сегнетоэлектриков связана с небольшими смещениями ионов по отношению к их положениям в неполяризованном кристалле (рис. 2.46).
Математическое описание:
Определение диэлектрической проницаемости сегнетоэлектриков с помощью закона Кюри-Вейса:
Где С – константа Кюри;
T – температура, [К]; ТК – точка Кюри [К];
- диэлектрическая проницаемость.
Применение:
Сегнетоэлектрические материалы (монокристаллы, керамика, плёнки) широко применяются в технике и в научном эксперименте. Благодаря большим значениям диэлектрической проницаемости их используют в качестве материала для конденсаторов высокой удельной ёмкости. Большие значения пьезоэлектрических констант обусловливают применение С. в качестве пьезоэлектрических материалов в приёмниках и излучателях ультразвука, в преобразователях звуковых сигналов в электрические и наоборот, в датчиках давления и др. Резкое изменение сопротивления вблизи температуры фазового перехода в некоторых сегнетоэлектриках используется в позисторах для контроля и измерения температуры. Сильная температурная зависимость спонтанной поляризации (большая величина пироэлектрической константы) позволяет применять сегнетоэлектрики в приёмниках электромагнитных излучений переменной интенсивности в широком диапазоне длин волн (от видимого до субмиллиметрового). Благодаря сильной зависимости диэлектрической проницаемости от электрические поля сегнетоэлектрики используют в нелинейных конденсаторах (варикондах), которые нашли применение в системах автоматики, контроля и управления. Зависимость показателя преломления от поля обусловливает использование сегнетоэлектриков в качестве электрооптических материалов в приборах и устройствах управления световыми пучками, включая визуализацию инфракрасного изображения. Перспективно применение С. в устройствах памяти вычислительных машин, дистанционного контроля и измерения температуры и др.
А.с. №5I32: Индивидуальный дозиметр радиоактивного излучения и другого проникающего излучения, состоящий из приемника излучения и измерительного прибора, отличающиеся тем, что с целью возможности определения суммарной дозы излучения за требуемый промежуток времени, его приемник выполнен в виде электрета, заключенного в герметичный корпус, содержащим газ, например, воздух.
- В.А. Панов Автоматизация проектирвания средств и су. Физико-технические эффекты
- Введение
- Понятие фтэ
- 1.2. Формализация описания фтэ
- Дерево фтэ
- Синтез физического принципа действия
- Алгоритм синтеза фпд
- Классификация фтэ
- Описание фтэ
- 2.1. Механические эффекты
- 2.1.1. Центробежная сила
- 2.1.2. Гироскопический эффект
- 2.1.3. Гравитация
- 2.1.4. Электропластический эффект в металлах
- 2.2.Молекулярные явления
- 2.2.1. Тепловое расширение
- 2.2.2. Капиллярные явления
- 2.2.3. Фазовые переходы
- Гидростатика и гидродинамика
- 2.3.1. Сорбция
- 2.3.2. Диффузия
- 2.3.3. Осмос
- 2.3.4. Цеолиты
- Гидростатика и гидродинамика
- Колебания и волны
- 2.5.1. Резонанс
- 2.5.2. Реверберация
- 2.5.3. Акустомагнетоэлектрический эффект
- Волновое движение
- 2.6.4. Дисперсия волн
- 2.6.5Электрические и электромагнитные явления
- 2.7.1.Электрическое поле
- 2.7.1.1.Джоуля-Ленца закон
- 2.7.1.2. Закон Кулона
- 2.7.1.3. Электростатическая индукция
- 2.7.2.1. Контур с током в магнитном поле
- Сила Лоренца
- Магнитострикция
- Электромагнитное поле
- Эдс индукции
- Взаимная индукция
- Индукционный нагрев
- Диэлектрические свойства вещества
- Пьезоэлектрический эффект
- 2.8.2. Обратный пьезоэлектрический эффект
- Пироэлектрики
- Электреты
- Сегнетоэлектрики
- Магнитные свойства вещества
- Закон Кюри
- Виллари эффект
- Магниторезистивный эффект
- Баркгаузена эффект
- Эффект Эйнштейна – де-Хааза
- Электрические свойства вещества
- Тензорезистивный эффект
- Терморезистивный эффект
- Термоэлектрические и эмиссионные явления
- 2.11.1. Эффект Зеебека
- 2.11.2. Эффект Пельтье
- 2.11.3. Термоэлектронная эмиссия
- Гальвано- и термомагнитные явления
- Холла эффект
- 2.12.2. Эттинсгаузена эффект
- Электрические разряды в газах
- Электрокинетические явления
- Свет и вещество
- 2.15.1. Полное внутреннее отражение
- Фотоэлектрические и фотохимические явления
- 2.16.1. Фотоэффект
- 2.16.2. Дембера эффект
- Люминесценция
- Фотоупругость
- Электрооптический эффект Керра.
- Фарадея эффект
- Эффект Зеемана
- Дихроизм
- Явления микромира
- Электронный парамагнитный резонанс
- Акустический парамагнитный резонанс
- Ядерный магнитный резонанс
- . Фотофорез
- Стробоскопический эффект
- Электрореологический эффект
- Акустоэлектрический эффект
- Заключение
- Литература