2.3.1. Сорбция
Входы: нет.
Выходы: количество вещества.
Графическая иллюстрация:
Рис.2.9. Зависимость адсорбции от давления при постоянной температуре
Сущность:
Сорбция- это поглощение одного вещества другим. Поглотитель - сорбент, поглощаемое вещество - сорбат.
Если поглощение происходит только в поверхностном слое сорбента, т.е. происходит поверхностная сорбция, она называется адсорбцией.
Если же сорбат продиффундировал по всему объёму сорбента, т.е. если произошла объёмная сорбция, она называется абсорбцией. По механизму протекания процесса сорбция подразделяется на физическую и химическую.
При физической сорбции между сорбентом и сорбатом происходит только межмолекулярное взаимодействие, т.е. сцепление достаточно непрочное, и со временем начинается обратный процесс - процесс отдачи поглощённого вещества, и в конце концов устанавливается равенство скоростей обоих процессов:
Vадсорбции == Vдесорбции
Химическая сорбция намного прочнее физической, десорбция самопроизвольно практически не происходит.
Ещё одно отличие между физической и химической сорбцией заключается в том, что при повышении температуры физическая сорбция уменьшается, а химическая увеличивается.
В чистом виде физическая и химическая сорбция встречаются редко, чаще всего сорбция включает элементы их обеих.
Адсорбция происходит на границе раздела следующих фаз:
твёрдое тело - газ;
твёрдое тело - раствор;
раствор - газ.
В случае поглощения газа твёрдым адсорбентом адсорбция является функцией температуры и газового давления.
На (рис.2.9) показана зависимость адсорбции от давления, снятая при постоянной температуре.
Математическое описание:
Г - величина адсорбции [кмоль/м2];
X - количество адсорбата, [кмоль]; S - площадь адсорбента, [м2].
. В случае если площадь адсорбента измерить трудно, то площадь его поверхности заменяют его массой:
, где
m – масса адсорбанта, [кг].
Применение.
1. Сорбция применяется для очистки воды. Под сорбционной очисткой воды обычно понимают сорбцию (концентрирование) веществ на поверхности или в объёме пор твёрдого материала. Теоретически, любое тело в пространстве ограничено поверхностью, и, следовательно, вещество его потенциально является сорбентом. Однако в практике очистки воды используются лишь сорбенты с развитой или специфической поверхностью естественного или искусственного происхождения, применение которых значительно эффективнее. Исторически применение сорбентов связано с микропористыми углеродными материалами - активными углями.
А.С.№ 24743: Двухфазное рабочее тело для компрессора теплосиловых установок, состоящее из газа и мелких частиц твердого тела, отличающееся тем, что с целью дополнительного сжатия газа в холодильнике и компрессоре и дополнительного расширения в нагревателе в качестве твердой фазы использованы сорбенты с общей или избирательной поглотительной способностью.
- В.А. Панов Автоматизация проектирвания средств и су. Физико-технические эффекты
- Введение
- Понятие фтэ
- 1.2. Формализация описания фтэ
- Дерево фтэ
- Синтез физического принципа действия
- Алгоритм синтеза фпд
- Классификация фтэ
- Описание фтэ
- 2.1. Механические эффекты
- 2.1.1. Центробежная сила
- 2.1.2. Гироскопический эффект
- 2.1.3. Гравитация
- 2.1.4. Электропластический эффект в металлах
- 2.2.Молекулярные явления
- 2.2.1. Тепловое расширение
- 2.2.2. Капиллярные явления
- 2.2.3. Фазовые переходы
- Гидростатика и гидродинамика
- 2.3.1. Сорбция
- 2.3.2. Диффузия
- 2.3.3. Осмос
- 2.3.4. Цеолиты
- Гидростатика и гидродинамика
- Колебания и волны
- 2.5.1. Резонанс
- 2.5.2. Реверберация
- 2.5.3. Акустомагнетоэлектрический эффект
- Волновое движение
- 2.6.4. Дисперсия волн
- 2.6.5Электрические и электромагнитные явления
- 2.7.1.Электрическое поле
- 2.7.1.1.Джоуля-Ленца закон
- 2.7.1.2. Закон Кулона
- 2.7.1.3. Электростатическая индукция
- 2.7.2.1. Контур с током в магнитном поле
- Сила Лоренца
- Магнитострикция
- Электромагнитное поле
- Эдс индукции
- Взаимная индукция
- Индукционный нагрев
- Диэлектрические свойства вещества
- Пьезоэлектрический эффект
- 2.8.2. Обратный пьезоэлектрический эффект
- Пироэлектрики
- Электреты
- Сегнетоэлектрики
- Магнитные свойства вещества
- Закон Кюри
- Виллари эффект
- Магниторезистивный эффект
- Баркгаузена эффект
- Эффект Эйнштейна – де-Хааза
- Электрические свойства вещества
- Тензорезистивный эффект
- Терморезистивный эффект
- Термоэлектрические и эмиссионные явления
- 2.11.1. Эффект Зеебека
- 2.11.2. Эффект Пельтье
- 2.11.3. Термоэлектронная эмиссия
- Гальвано- и термомагнитные явления
- Холла эффект
- 2.12.2. Эттинсгаузена эффект
- Электрические разряды в газах
- Электрокинетические явления
- Свет и вещество
- 2.15.1. Полное внутреннее отражение
- Фотоэлектрические и фотохимические явления
- 2.16.1. Фотоэффект
- 2.16.2. Дембера эффект
- Люминесценция
- Фотоупругость
- Электрооптический эффект Керра.
- Фарадея эффект
- Эффект Зеемана
- Дихроизм
- Явления микромира
- Электронный парамагнитный резонанс
- Акустический парамагнитный резонанс
- Ядерный магнитный резонанс
- . Фотофорез
- Стробоскопический эффект
- Электрореологический эффект
- Акустоэлектрический эффект
- Заключение
- Литература