6. Индукционные реле.
Серии РТ-80 (81,85), РТ-90.
Вращающий момент возникает при взаимодействии переменных магнитных полей неподвижных обмоток с токами, индуцированными этими полями во вращающемся диске.
1- Катушка.
2- Магнитопровод
3- Короткозамкнутый виток.
4- Вращающийся диск.
Чтобы диск вращался нужно создать два магнитных потока, сдвинутых в пространстве и по фазе друг относительно друга. Требуемые магнитные потоки получают с помощью короткозамкнутого витка 3, надеваемого на часть магнитопровода. Возникающий при этом вращающий момент равен
Мвр = К*Ф1*Ф2*SinY
Y- угол сдфига фаз между магнитными потоками потоками Ф1 и Ф2.
От воздействия этих потоков в диске индукцируется ЭДС, которая вызывает токи в алюминиевом диске.
Вращающий момент равен
Мвр = КI2;
Чем больше величина тока, протекающего по обмотке реле, тем больше вращающий момент и соответственно скорость вращения диска.
Реле состоит из двух элементов.
1. Индукционный элемент.
2. 2. Электромагнитный элемент.
Индукционный элемент имеет следующие составляющие части:
1. Электромагнит с двумя короткозамкнутыми витками на полюсах. Концы обмотки электромагнита выводятся на панель. Можем менять количество витков катушки.
2. Подвижная рамка.
3. Подвижный алюминиевый диск, закрепленный на рамке.
4. Червяк, насаженный на ось диска.
5. Зубчатый сектор, который входит в зацепление с червяком при повороте рамки.
6. Постоянный магнит, который тормозит диск. Сила торможения зависит от скорости вращения диска.
7. Устройство для регулирования времени срабатывания.
Диск начинает вращаться при токе, проходящем через обмотки реле, равным 0,1 – 0,2 А. Но это не приводит к срабатыванию реле и замыканию контактной системы. Пружина заставляет занимать определенной положение рамку с диском. По мере увеличения проходящего по катушке тока, вращающий момент увеличивается, рамка поворачивается и приводит к зацеплению зубчатого сегмента и червяка.
Ток срабатывания – это ток, при котором происходит сцепление червяка с сегментом.
Это реле обладает выдержкой времени, то есть срабатывает не мгновенно, а через некоторое время Dt.
Dt – это время между зацеплением зубчатого сегмента и червяка и замыканием контактной системы.
Dt = tсц – tзк;
Характеристика времени срабатывания реле.
Из рисунка видно, что чем больше ток, тем меньше время срабатывания.
При токе реле, равным семи значениям тока срабатывания происходит насыщение магнитопровода, и дальнейшее увеличение скорости диска и времени срабатывания не происходит. Время срабатывания остается постоянным.
Коэффициент возврата данного реле составляет 0,8. Мощность срабатывания реле 10 ВА.
Вторая часть реле – электромагнитная. Происходит срабатывание сразу, без выдержки времени. При токе 2-8 тока срабатывания. Ток срабатывания электромагнитного элемента устанавливается винтом путем изменения воздушного зазора между электромагнитом и концом якоря. На головке винта имеются метки с цифрами 2-8. Они соответствуют кратностям тока срабатывания отсечки – отношению тока срабатывания отсечки к току срабатывания индукционного элемента.
- 1. Особенности сэс. Виды коротких замыканий. Назначение релейной защиты.
- 2. Основные требования, предъявляемые к устройствам рЗиА. Виды селективности. Виды релейной защиты.
- 3. Быстродействие
- 4. Надежность
- 3. Классификация реле. Электромагнитные измерительные реле. Принцип действия. Конструкция.
- 4. Основные типы вторичных измерительных электромагнитных реле косвенного действия. Логические реле. Реле времени.
- 2. Реле напряжения.
- 5. Логические реле. Промежуточные реле. Указательные реле. Герконовые реле.
- 6. Индукционные реле.
- 7. Полупроводниковые реле. Логические органы полупроводниковых реле. Полупроводниковые элементы измерительных органов.
- 8. Преимущества и недостатки полупроводниковых измерительных реле. Полупроводниковые измерительные реле. Реле тока рст-14.
- 9. Преимущества и недостатки полупроводниковых измерительных реле. Реле направления мощности рм-11.
- 10. Блоки микропроцессорной релейной защиты (бмрз).
- 11.Схемы соединения трансформаторов тока и реле.
- 12. Электротепловые элементы. Плавкие предохранители. Электротепловые реле. Температурные реле.
- 13. Оперативный ток.
- 14. Токовая защита линий напряжением выше 1000 в с односторонним питанием. Токовая отсечка без выдержки времени. Токовая отсечка на линиях с двухсторонним питанием.
- Токовая отсечка без выдержки времени.
- Лекция № 7
- 15. Токовая отсечка с выдержкой времени.
- 16. Максимальная токовая защита.
- Выбор выдержки времени
- 17.Схемы токовых защит. Совмещенное исполнение. Разнесенное исполнение. Схема токовой защиты с независимой выдержкой времени на постоянном оперативном токе. Принцип действия.
- 18. Схема токовой защиты с вторичным реле прямого действия. Токовая защита с комбинированной выдержкой времени на переменном оперативном токе.Принцип действия.
- 19. Схема двухступенчатой токовой защиты с независимой выдержкой времени на переменном оперативном токе. Мтз на выпрямленном оперативном токе. Принцип действия.
- 20. Токовая защита с комбинированным пуском по напряжению.
- 21.Токовая защита с выдержкой времени, зависимой от третьей гармонической.
- 22. Совместное действие токовых защит и устройств автоматики.
- 23. Токовые защиты нулевой последовательности в сетях с глухозаземленной нейтралью.
- 24. Защиты от замыкания на землю в сетях с изолированными или заземленными через дугогасящие реакторы нейтралями. Устройство общей неселективной сигнализации от замыкания на землю.
- 25. Токовая защита нулевой последовательности.
- 26. Токовые направленные защиты. Выдержка времени и ток срабатывания направленной мтз. Мертвая зона. Схемы включения реле направления мощности.
- 27. Общая оценка токовых направленных защит. Схема направленной мтз на переменном оперативном токе.
- 28. Дифференциальные токовые защиты. Продольная дифференциальная защита.
- 29. Поперечная дифференциальная токовая защита. Ток небаланса.
- 30. Поперечная дифференциальная токовая направленная защита. Зона каскадного действия. Схема подачи оперативного тока. Расчет тока срабатывания. Комбинированный пуск по напряжению.
- 31. Устройство авр на линиях с односторонним питанием. Требование к авр. Расчет параметров схемы авр.
- 32. Схема авр на постоянном оперативном токе. Принцип действия.
- 33. Схемы апв. Требования апв. Расчет параметров схемы апв. Схема апв на выпрямленном оперативном токе. Принцип действия.
- 34. Релейная защита трансформаторов. Газовая защита.
- 35. Токовые защиты трансформаторов. Схема мтз трансформатора.
- 36. Защита трансформатора от коротких замыканий на землю.
- 37. Дифференциальные токовые защиты трансформаторов. Ток небаланса. Дифференциальная токовая отсечка.
- 38. Дифференциальная токовая защита с промежуточными насыщающимися трансформаторами тока. Принцип действия насыщающегося трансформатора тока. Расчет тока срабатывания. Реле рнт-565. Реле дзт-11.
- 39. Максимальная токовая защита трансформатора с комбинированным пуском по напряжению. Защита трансформатора от перегрузок.
- 40. Защита асинхронных электродвигателей напряжением до 1 кВ.
- 41. Защита асинхронных электродвигателей напряжением выше 1 кВ.