33. Схемы апв. Требования апв. Расчет параметров схемы апв. Схема апв на выпрямленном оперативном токе. Принцип действия.
Назначение устройств АПВ. Большинство повреждений воздушных линий электропередачи возникает в результате схлестывания проводов при сильном ветре и гололеде, нарушения изоляции во время грозы, падения деревьев, набросов, замыкания проводов движущимися механизмами и т.п. Эти повреждения неустойчивы и при быстром отключении поврежденной линии самоустраняются. В этом случае при повторном включении линии она остается в работе и электроснабжение потребителей не прекращается. Повторное включение осуществляется автоматически устройством автоматического повторного включения (УАПВ). При устойчивых повреждениях защита снова отключает линию после действия УАПВ, т. е. происходит неуспешное АПВ. По статистическим данным, УАПВ в системах электроснабжения нашей страны имеют в среднем 60—75% успешных действий. Такая эффективность УАПВ делает их одним из основных средств повышения надежности электроснабжения. Согласно ПУЭ, устройствами АПВ должны оборудоваться воздушные и смешанные кабельно-воздушные линии всех типов напряжением выше 1 кВ при наличии на них соответствующих коммутационных аппаратов.
Классификация АПВ:
- трехфазное (ТАПВ) и однофазное (ОАПВ);
- по способу проверки синхронизма при АПВ — для линий с двусторонним питанием;
- по способу воздействия на привод выключателя — механические и электрические устройства АПВ;
- по кратности действия —АПВ однократного и многократного действия.
Основным требованиям к устройствам АПВ:
1. Включение АПВ
1.1 Должны находиться в состоянии постоянной готовности действию и срабатывать при всех случаях аварийного отключения выключателя, кроме случаев отключения выключателя защитой после включения его дежурным персоналом;
1.2. Не должны приходить в действие при отключениях выключателя дежурным персоналом. Это обеспечивается пуском устройств АПВ от несоответствия положений выключателя и его ключа управления, которое возникает всегда при любом автоматическом отключении выключателя. 1.3. Схемы АПВ должны допускать возможность автоматического вывода их из действия при срабатывании тех или иных защит.
2. Устройства АПВ должны иметь минимально возможное время срабатывания tАПВ1 для того, чтобы сократить продолжительность перерыва питания потребителей.
Для успешного действия АПВ необходимо, чтобы время срабатывания tАПВ1 было больше:
- времени tг.п, необходимого для восстановления готовности привода к работе на включение (для применяемых типов приводов с учетом условий их работыtг.п=0,1.. .0,3 с);
- времени tд.с, необходимого для деионизации среды в точке повреждения (для установок напряжением до 220 кВ /Д.сtк0,2 с);
-времени готовности выключателя t.в, необходимого для восстановления отключающей способности выключателя после отключения им тока к. з.
Для однократного АПВ время tг.в всегда меньше суммы времени tгп и времени включения выключателя tвв. Поэтому определяющим обычно является условие tАпв1>tг.п При этом с учетом времени запаса tзап=0,4. ..0,5 с время срабатывания УАПВ для линий с односторонним питанием
В отдельных случаях для воздушных линии, когда велика вероятность их повреждения при падении деревьев и по другим аналогичным причинам, для эффективности АПВ его выдержку времени целесообразно принимать несколько повышенной — около нескольких секунд. В этом случае также уменьшается вероятность неселективного перегорания предохранителей при неуспешном АПВ, установленных на элементах систем электроснабжения, расположенных ближе к источнику питания, чем рассматриваемый выключатель с устройством АПВ.
3. Автоматически с заданной выдержкой времени устройства АПВ должны возвращаться в состояние готовности к новому действию после включения в работу выключателя. При выборе вы держки времени tАПВ2 на возврат устройства АПВ в состояние готовности к действию должны выполняться следующие требования:
устройство не должно производить многократные включения выключателя на неустранившееся короткое замыкание, что обеспечивается при условии, если релейная защита с максимальной выдержкой времени tс.з max успеет отключить выключатель, включенный на короткое замыкание, раньше, чем устройство АПВ вернется в состояние готовности к новому действию, т. е. должно быть
где tзап — время, принимаемое равным ступени селективности защиты линии;
устройство должно быть готовым к действию не раньше, чем это допускается по условиям работы выключателя после успешного включения его в работу устройством АПВ.
Опыт показывает, что для однократного АПВ оба указанных в пункте 3 требования выполняются, если принять tАПВ2 =15... 25 с. Для УАПВ двукратного действия время возврата в состояние готовности после второго цикла принимается равным t АПВ2= 60...100 с.
Схема устройства АПВ на постоянном оперативном токе
В устройстве АПВ используется комплектное реле РПВ-358.
Реле включает в себя:
1. Реле времени КТ, создающее выдержку времени срабатывания tАПВ1;
2. Промежуточное реле КL1 с двумя обмотками— последовательной обмоткой тока К.L1.1 и обмоткой напряжения КL1.2;
3. Конденсатор С1, в результате разряда которого срабатывает реле KL1 и обеспечивается однократность действия УАПВ;
4. Резисторы:
- R1, обеспечиваюет термическую стойкость реле времени;
- R2, ограничивает скорость заряда конденсатора С1;
- RЗ,
5. Конденсатор С1
6. Диод VD.
Для питания электромагнита отключения УАТ выключателя используется предварительно заряженный конденсатор С2 блока питания и заряда UGV . Промежуточное реле KL2 установлено для разделения оперативных цепей электромагнита отключения и реле РПВ-358. Электромагнит включения YAC выключателя получает питание от трансформатора собственных нужд Т1 через мощный выпрямитель VS.
Принцип действия схемы. При отключении выключателя по любой причине вследствие замыкания его вспомогательного контакта Q1 срабатывает реле положения выключателя КQТ и замыкает свой контакт КQТ.1 в цепи пуска устройства АПВ. Если оключение произошло не от ключа упправления SА, то он остается в положении «Включено», а его контакт SА.1 замкнут.
Цепь катушки реле времени КТ замыкается. Его контакт КТ.1, размыкаясь без выдержки времени, включает резистор R1, обеспечивая термическую стойкость реле, а контакт КТ.2 с заданной выдержкой времени подключает обмотку КL1.2 промежуточного реле к конденсатору С1. Конденсатор разряжается через катушку реле KLI, оно срабатывает и замыкает контакт К.L1.1 в цепи контактора включения выключателя КМ, в которую включена последовательная обмотка КL1.1 реле. Она удерживает реле КL в возбужденном состоянии до полного включения выключателя. При успешном АПВ выключатель остается во включенном положении. Действие устройства АПВ фиксируется указательным реле КН.
Схема становится готовой к новому повторному действию после заряда конденсатора С1. Время заряда принимается tАПВ2=20 с- При этом обеспечивается однократность действия устройства АПВ, так как конденсатор заряжается только при включенном положении выключателя. Включения выключателя при неуспешном АПВ не происходит.
В схему УАПВ включено двухобмоточное реле блокировки КВS с замедленным возвратом tв.р=0,3 ...0,4 с. Замедление достигается закорачиванием последовательной обмотки КВS.2 реле его замыкающим контактом КВS.3
Реле предотвращает многократные включения выключателя при неисправностях в оперативных цепях. При первом отключении выключателя реле KBS срабатывает и самоудерживается контактом KBS.1 в цепи обмотки KBS.1, а его контакт KBS.2 размыкает цепь контактора KM электромагнита включения YACвыключателя.
- 1. Особенности сэс. Виды коротких замыканий. Назначение релейной защиты.
- 2. Основные требования, предъявляемые к устройствам рЗиА. Виды селективности. Виды релейной защиты.
- 3. Быстродействие
- 4. Надежность
- 3. Классификация реле. Электромагнитные измерительные реле. Принцип действия. Конструкция.
- 4. Основные типы вторичных измерительных электромагнитных реле косвенного действия. Логические реле. Реле времени.
- 2. Реле напряжения.
- 5. Логические реле. Промежуточные реле. Указательные реле. Герконовые реле.
- 6. Индукционные реле.
- 7. Полупроводниковые реле. Логические органы полупроводниковых реле. Полупроводниковые элементы измерительных органов.
- 8. Преимущества и недостатки полупроводниковых измерительных реле. Полупроводниковые измерительные реле. Реле тока рст-14.
- 9. Преимущества и недостатки полупроводниковых измерительных реле. Реле направления мощности рм-11.
- 10. Блоки микропроцессорной релейной защиты (бмрз).
- 11.Схемы соединения трансформаторов тока и реле.
- 12. Электротепловые элементы. Плавкие предохранители. Электротепловые реле. Температурные реле.
- 13. Оперативный ток.
- 14. Токовая защита линий напряжением выше 1000 в с односторонним питанием. Токовая отсечка без выдержки времени. Токовая отсечка на линиях с двухсторонним питанием.
- Токовая отсечка без выдержки времени.
- Лекция № 7
- 15. Токовая отсечка с выдержкой времени.
- 16. Максимальная токовая защита.
- Выбор выдержки времени
- 17.Схемы токовых защит. Совмещенное исполнение. Разнесенное исполнение. Схема токовой защиты с независимой выдержкой времени на постоянном оперативном токе. Принцип действия.
- 18. Схема токовой защиты с вторичным реле прямого действия. Токовая защита с комбинированной выдержкой времени на переменном оперативном токе.Принцип действия.
- 19. Схема двухступенчатой токовой защиты с независимой выдержкой времени на переменном оперативном токе. Мтз на выпрямленном оперативном токе. Принцип действия.
- 20. Токовая защита с комбинированным пуском по напряжению.
- 21.Токовая защита с выдержкой времени, зависимой от третьей гармонической.
- 22. Совместное действие токовых защит и устройств автоматики.
- 23. Токовые защиты нулевой последовательности в сетях с глухозаземленной нейтралью.
- 24. Защиты от замыкания на землю в сетях с изолированными или заземленными через дугогасящие реакторы нейтралями. Устройство общей неселективной сигнализации от замыкания на землю.
- 25. Токовая защита нулевой последовательности.
- 26. Токовые направленные защиты. Выдержка времени и ток срабатывания направленной мтз. Мертвая зона. Схемы включения реле направления мощности.
- 27. Общая оценка токовых направленных защит. Схема направленной мтз на переменном оперативном токе.
- 28. Дифференциальные токовые защиты. Продольная дифференциальная защита.
- 29. Поперечная дифференциальная токовая защита. Ток небаланса.
- 30. Поперечная дифференциальная токовая направленная защита. Зона каскадного действия. Схема подачи оперативного тока. Расчет тока срабатывания. Комбинированный пуск по напряжению.
- 31. Устройство авр на линиях с односторонним питанием. Требование к авр. Расчет параметров схемы авр.
- 32. Схема авр на постоянном оперативном токе. Принцип действия.
- 33. Схемы апв. Требования апв. Расчет параметров схемы апв. Схема апв на выпрямленном оперативном токе. Принцип действия.
- 34. Релейная защита трансформаторов. Газовая защита.
- 35. Токовые защиты трансформаторов. Схема мтз трансформатора.
- 36. Защита трансформатора от коротких замыканий на землю.
- 37. Дифференциальные токовые защиты трансформаторов. Ток небаланса. Дифференциальная токовая отсечка.
- 38. Дифференциальная токовая защита с промежуточными насыщающимися трансформаторами тока. Принцип действия насыщающегося трансформатора тока. Расчет тока срабатывания. Реле рнт-565. Реле дзт-11.
- 39. Максимальная токовая защита трансформатора с комбинированным пуском по напряжению. Защита трансформатора от перегрузок.
- 40. Защита асинхронных электродвигателей напряжением до 1 кВ.
- 41. Защита асинхронных электродвигателей напряжением выше 1 кВ.