8.1. Задачи экспериментального исследования
Успешное применение в конструкции тепловой защиты теплозащитных материалов зависит от того, насколько подробно изучены поведение и свойства материалов в различных условиях конвективного и радиационного нагрева. Воспроизведение подобных условий является, как правило, очень сложной технической задачей, требующей значительных материальных затрат. Поэтому экспериментальное исследование взаимодействия теплозащитных материалов с высокотемпературной средой проводится последовательно в три основных этапа.
Сначала проводят сравнительные ( отборочные) испытания вновь разработанных рецептур теплозащитных материалов. Параметры среды и метод испытания подбирают таким образом, чтобы выявить наиболее важные свойства материала, характеризующие его поведение и возможности в заданных условиях. Сравнительные испытания проводят при постоянных параметрах набегающего потока на одном режиме работы установки. При исследованиях такого типа необходимо учитывать воспроизводимость условий испытаний, надежность и точность методов контроля параметров высокотемпературной среды, достаточность объема получаемой информации для того, чтобы с заданной точностью проводить сравнение материалов. По результатам сравнительных испытаний отбирают наиболее эффективные материалы, которые подлежат дальнейшему изучению.
Второй этап исследований посвящен изучению механизма разрушения материала и определению его основных характеристик в широком диапазоне изменения параметров высокотемпературной среды ( энтальпии, давления, скорости, cостава). Результаты этих исследований используются для построения модели разрущения материала, проверки теоретических методов расчета , рекомендации области преимущественного использования данного материала и т.п.
Третий этап исследований охватывает широкий круг вопросов, связанных с изучением теплофизических свойств материалов, в том числе степени черноты поверхности, теплоты физико-химических превращений, молекулярной массы продуктов разложения связующего и ряда других свойств , которые могут зависеть от характера воздействия набегающего потока , а также технологии изготовления , структуры наполнителя и связующего и т.д. Проведение исследований такого типа требует разработки специальных методик и целого комплекса измерений в условиях высокотемпературной среды.
Резюмируя сказанное, можно следующим образом сформулировать основные задачи экспериментальных исследований разрущающихся теплозащитных материалов :
1) Проведение сравнительных испытаний вариантов теплозащитных материалов при определенных “ стандартных” режимных параметрах, обусловленных условиями их будущего применения.
2) Выяснение определяющего механизма разрушения при изменении условий воздействия потока в широких пределах, в том числе и в нестационарных тепловых условиях , с последующим использованием этой модели для расчета теплозащитных свойств покрытия и выбора необходимой толщины теплозащитных материалов.
3) Определение теплофизических и кинетических характеристик разрушающихся теплозащитных материалов в условиях, моделирующих натурные.
Проведенный в курсе “ Тепловое проектирование КА” анализ конвективного и радиационного теплового воздействия , а также исследование различных механизмов разрушения позволяет указать следующие основные параметры, воспроизведение которых важно при экспериментальной отработке теплозащитных материалов:
1) энтальпия заторможенного потока газа ;
2) химический состав набегающего газового потока, в особенности концентрация химически активных компонент;
3) давление заторможенного потока газа ;
4) режим течения в пограничном слое – ламинарный или турбулентный;
5) уровень сдвигающих напряжений на разрушающейся поверхности - градиент давления, силы трения ( и ).
Указанный перечень , конечно, не может считаться достаточно полным для всех этапов отработки теплозащитных материалов. В нем указаны лишь те параметры, которые влияют на механизм разрушения в условиях конвективного нагрева.
При анализе совместного конвективного и лучистого теплового воздействия на материал появляются дополнительные определяющие параметры, причем главные из них - отношение тепловых потоков и энтальпия торможения .
Что касается габаритов модели, то они должны быть достаточно большими, чтобы исключить неодномерность прогрева материала , а также зависимость результатов испытаний от соотношения между структурой материала и размеров модели.
Так как при лабораторной отработке теплозащитных материалов обычно не удается смоделировать сразу все перечисленные особенности теплового и силового воздействия, то выбирают такую методику, которая позволяет воспроизводить наиболее важные параметры набегающего потока газа, т. е. Ставится задача о частичном моделировании одного или нескольких параметров и о переносе результатов отдельных экспериментальных исследований на натурные условия с помощью теоретических моделей разрушения. Это требует осуществления комплексных программ испытаний при высоких точности измерения всех важнейших параметров потока.
- 1.1. Цель и задачи экспериментальной отработки
- 1.2. Критерии эффективности экспериментальной отработки
- 1.3. Классификация испытаний ка и его составных частей.
- 2.1. Пребывание в земных условиях .
- 2.2. Участок выведения ка на траекторию полета
- 2.3. Пребывание в космосе
- 2.4. Торможение и спуск ка или его части ( ca) в атмосфере планет.
- 3.1. Статические испытания
- 3.2. Вибрационные испытания
- 4.1.Испытания на воздействие инерционных нагрузок.
- 4.2.Испытания на воздействие ударных нагрузок .
- 5.1. Задачи, решаемые при газодинамических испытаниях , и методический подход к их решению.
- 5.2. Средства экспериментального моделирования газодинамических процессов
- 6.1.Источники акустических нагрузок
- 6.2.Виды акустических испытаний и их краткая характеристика .
- 7.1.Общая характеристика тепловой отработки ка: этапы, структура и задачи отработки.
- 7.2. Проблемы тепловакуумной отработки ка
- 7.3. Методы экспериментального моделирования космического вакуума и радиационных свойств космического пространства.
- 7.4. Моделирование воздействия на ка электромагнитного излучения Солнца.
- 7.4.2.Источники излучения , используемые в имитаторах солнечного излучения
- 7.5. Моделирование теплового воздействия планет на поверхность ка
- 7.6. Вакуумно-температурные испытания ка.
- 7.7. Невакуумные испытания герметичных отсеков.
- 7.8. Методические вопросы воспроизведения расчетных тепловых нагрузок на испытуемый объект .
- 8.1. Задачи экспериментального исследования
- 8.2. Экспериментальные высокотемпературные установки для отработки теплозащитных покрытий
- 10.1 Источники ионизирующего излучения
- 10.2. Источники радиации, применяемые при экспериментальных исследованиях
- 10.3. Испытания на воздействие магнитных полей
- 10.4. Электрические испытания.
- 11.2. Испытания ла в целом
- 7.1.Общая характеристика тепловой отработки ка: этапы, структура
- 7.4. Моделирование воздействия на ка электромагнитного излучения