4.8.8Электротехническая часть
Для сопряжения с турбиной Т-185-130 предлагается применение турбогенератора типа ТВМ-220-2 мощностью 220МВт производства НПО «ЭЛСИБ».
Турбогенераторы серии ТВМ имеют масляное охлаждение активных и конструктивных частей статора и водяное охлаждение ротора.
Турбогенератор предназначен для выработки электроэнергии при непосредственном соединении с паровой турбиной.
Окружающая среда не взрывоопасная, не содержащая пыль в концентрациях, снижающих параметры турбогенератора в недопустимых пределах.
Номинальные данные турбогенератора представлены в таблице 4.32.
Таблица 4.32 – Основные технические характеристики генератора ТВМ-220-2У3
Наименование параметра | Значение |
Номинальная активная мощность, МВт | 220 |
Полная мощность, МВА | 259 |
Максимальная длительно-допустимая мощность, МВт | 125 |
Напряжение, В | 15750 |
Ток статора, А | 9480 |
Коэффициент мощности, о.е. | 0,85 |
Частота вращения, об/мин | 3000 |
Частота, Гц | 50 |
Отношение короткого замыкания, о.е. | 0,42 |
Статическая перегружаемость, о.е. | 1,65 |
Коэффициент полезного действия, % | 98,8 |
Соединение фаз | “двойная звезда” |
Расход изоляционного масла через статор, м3/ч | 450 |
Температура охлаждающей воды на входе в теплообменники масла и дистиллата,С | 33 |
Расход дистиллата в системе охлаждения ротора, м3/ч | 55 |
Температура охлаждающего масла и дистиллата на входе в генератор, С | 40 |
Масса, т - общая - статора - ротора |
200,0 151,0 38,0 |
Турбогенератор допускает длительную работу при несимметричной нагрузке, если токи в фазах не превышают допустимого значения для данных условий работы турбогенератора при симметричной нагрузке, а ток обратной последовательности при этом не должен превышать 8% номинальной величины тока статора.
Турбогенератор допускает работу в режиме недовозбуждения при номинальной активной мощности и коэффициенте мощности, равном 0,95 (опережающем).
Турбогенератор допускает работу в асинхронном режиме в течение 15 минут при отдаваемой активной мощности не более 60% от номинальной, в течение 30 минут – при отдаваемой мощности не более 50% от номинальной, в течение 60 минут – при отдаваемой мощности не более 40% от номинальной.
Исполнение турбогенератора горизонтальное.
Сердечник и обмотка статора погружены в изоляционное масло. Объем масла, заполняющего статор, ограничивается корпусом, торцевыми щитами и изоляционным цилиндром, заведенным в расточку сердечника статора. Изоляционный цилиндр и торцевые щиты в местах прилегания к корпусу статора уплотнены кольцами из резинового шнура.
Корпус статора сварной неразъемный. Сердечник статора собирается из изолированных сегментов электротехнической стали, в которых при штамповке вырубаются узкие прямоугольные отверстия, образующие в сердечнике аксиальные каналы, по которым протекает изоляционное масло, охлаждающее сердечник.
Обмотка статора трехфазная двухслойная с укороченным шагом. Стержни обмотки выполняются с транспозицией элементарных проводников в пазовой и лобовой частях. Между рядами проводников в стержне образован канал для охлаждения изоляционным маслом. Фазы обмотки соединены в звезду.
Линейные и нулевые вывода обмотки статора выводятся из корпуса статора через изоляторы и размещаются внизу корпуса. Плита, на которой закрепляются вывода, приспособлена для подсоединения закрытых токопроводов.
Ротор изготавливается из цельной поковки специальной стали.
Обмотка ротора состоит из концентрических катушек, изготовленных из полой меди с присадкой серебра. Лобовые части обмотки удерживаются бандажными кольцами из высокопрочной немагнитной стали.
Охлаждение обмотки ротора осуществляется дистиллатом, который протекает по каналам проводников. Все катушки по дистиллату соединены параллельно. Подвод воды и ее слив осуществляется через центральное отверстие вала по конценрически установленным трубам из нержавеющей стали.
Контактные кольца выполнены из специальной стали и насажены на консольный конец вала. Для охлаждения контактных колец и щеток и отвода щеточной пыли из зоны щеточно-контактного аппарата между контактными кольцами на валу установлен вентилятор.
Подшипники турбогенератора выносные. Подшипник со стороны контактных колец имеет самоустанавливающийся вкладыш со сферической посадкой в корпусе. Подшипник со стороны турбины встраивается в корпус турбины и поставляется с турбиной. Подача масла в подшипники турбогенератора из системы смазки подшипников турбины.
Для охлаждения турбогенератора на электростанции должны быть смонтированы системы охлаждения статора и ротора с использованием оборудования, поставляемого с генератором. Охлаждение статора изоляционным маслом и ротора дистиллатом осуществляется по замкнутому контуру: электронасос – охладитель – фильтр – объект охлаждения – электронасос.
В каждой системе устанавливается по резервному насосу, резервному охладителю, резервному фильтру.
В системе охлаждения статора для компенсации температурных изменений объема изоляционного масла, заполняющего статор и систему, на всас насосов подключаются расширительные устройства. Одно рабочее, другое резервное.
Изоляционное масло, очищенное от механических примесей и воды на маслохозяйстве станции перед заполнением статора и его системы охлаждения, дегазируется. Оборудование для дегазации и заполнения статора и его системы под вакуумом поставляется с генератором. Один комплект такого оборудования обеспечивает обслуживание двух-трех однотипных турбогенераторов, установленных в машзале.
Система возбуждения турбогенератора – тиристорная, выполненная по схеме самовозбуждения.
Выдачу мощности блока предлагается осуществлять блочной схемой генератор-трансформатор на шины ОРУ-220кВ. Для этого необходимо расширение существующего ОРУ-220кВ на одну ячейку со стороны временного торца.
Согласно ВНТП, п. 8.12, в РУ с двумя основными и третьей обходной системами шин, при числе присоединений (линий, трансформаторов) не менее 12 - системы шин не секционируются.
В Приложении 18 представлена главная электрическая схема станции после ввода турбины Т-185/220-130.
Связь турбогенератора газовой турбины с блочным трансформатором на всем протяжении выполняется посредством комплектного токопровода типа ТЭНЕ-20-10000-300 УХЛ1. Диаметр экрана каждой фазы 750 мм, масса одного погонного метра фазы – 98 кг.
Между генератором и блочным трансформатором устанавливается генераторное распределительное устройство типа HECS-100M путем врезки в токопровод. Основные характеристики представлены в таблице 4.33.
Таблица 4.33 – Основные технические характеристики ЭГРУ типа HECS-100M
№ п/п | Наименование | Значение параметров |
1 | Тип ЭГРУ | HECS-100M |
2 | Наибольшее рабочее напряжение, кВ | 25,3 |
3 | Номинальный рабочий ток, А | 10500 |
4 | Испытательное напряжение одноминутное промышленной частоты относительно земли и между контактами выключателя, кВ | 60 |
5 | Испытательное напряжение грозового импульса относительно земли и между контактами выключателя, кВ | 125 |
6 | Номинальный ток электродинамической стойкости, кАпик | 280 |
7 | Номинальный ток термической стойкости, кА/3сек | 100 |
8 | Номинально включаемый ток КЗ, кАпик | 280 |
9 | Номинально отключаемый ток КЗ, кА | 100 |
10 | Последовательность операций | ВО-30мин-ВО |
11 | Номинальное время отключения, мсек | 67 |
12 | Номинальный ток динамической стойкости разъединителя и заземлителя, кА | 280 |
13 | Номинальный ток термической стойкости разъединителя и заземлителя, кА | 100 |
14 | Время срабатывания разъединителя и заземлителя, с | 2 |
Блочный трансформатор типа ТДЦ-250000/220У1 устанавливается напротив вновь возводимого главного корпуса в общем ряду с существующими трансформаторами первой очереди. Связь блочного трансформатора с шинами ОРУ-220кВ осуществляется гибкими связями.
Основные технические характеристики трансформаторов представлены в таблице 4.34.
Таблица 4.34 – Основные технические характеристики трансформаторов
Показатель | Значение параметра | |
Обозначение | БТ2 | ТСН2 |
Тип | ТДЦ-250000/220 | ТРДНС-32000/20 |
Мощность, МВА | 250 | 32 |
Напряжение ВН, кВ | 242 | 10,5±8х1,5% |
Напряжение НН, кВ | 15,75 | 6,3-6,3 |
Pх, кВт | 240 | 30 |
Pk, кВт | 650 | 145 |
Схема соединения обмоток | Y-0/Δ-11 | Δ / Δ-Δ-0-0 |
Масса полная, т | 253 | 61,0 |
Масса транспортная, т | 213 | 54,0 |
Масса масла, т | 41,7 | 15,2 |
Длина, мм | 11700 | 6600 |
Ширина, мм | 5650 | 4300 |
Высота, мм | 7130 | 5530 |
Блочный трансформатор устройств регулирования напряжения не имеет. Нейтраль обмотки высшего напряжения трансформатора 220 кВ имеет глухое заземление.
К использованию в ячейке ОРУ-220кВ предлагается смонтировать баковый элегазовый выключатель 3AP1DT-245/EK.
В качестве линейного и шинных разъединителей предлагается использовать горизонтально-поворотные разъединители типа DBF-245.
В проекте предусматривается рабочий трансформатор собственных нужд ТСН типа ТРДНС-32000/10-У1 с сочетанием напряжений 10,58x1,5%/6,3-6,3 кВ, устанавливаемый в цепи генератора газовой турбины и присоединяемый отпайкой от генераторного токопровода. Отпайки выполняются токопроводом ТЭНЕ-10-3150-128. От ТСН с помощью токопровода ТЗК-6-1600-81 получает питание секция КРУ - 6 кВ. Резервирование секции КРУ-6кВ осуществляется от резервных шинопроводов ШРА и ШРБ.
Трансформатор ТСН оборудован автоматическим регулятором напряжения для поддержания номинального напряжения на вторичной стороне. Автоматическая и ручная удаленная настройка доступна с главного щита управления через АСУ. Организуется учет количества переключений устройства РПН.
В цепи генератора устанавливается трансформатор питания системы возбуждения.
Питание потребителей собственных нужд напряжением 0,4 кВ предусматривается от 2хКТПСН-0,4 кВ, которое подключается к блочным секциям КРУ-6 кВ.
Питание потребителей собственных нужд постоянного тока предусматривается от устанавливаемой аккумуляторной батареи.
Основные технические решения по системам собственных нужд, постоянного тока, релейной защите и автоматике электрической части, молниезащиты, заземления и освещения совпадают с решениями, принятыми для варианта строительства турбины Т-60-130.
- 5 План – график реализации проекта 136
- 6 Капиталовложения в строительство 143
- 7 Оценка экономической эффективности 149
- 8 Заключение 169
- 9 Приложения и чертежи 172
- 1Общие положения и исходные данные
- 2Существующее состояние Томской тэц-3
- 2.1Краткая характеристика и основные показатели тэц
- 2.2Котельное оборудование
- 2.2.1Котел бкз-500-140-1 (ст. № 1а, 1б)
- 2.2.2Котел е-160-2,4-бт (ст. №№ ка-1, ка-2, ка-3, ка-4, ка-5)
- 2.3Турбинное оборудование
- 2.4Тепловая схема тэц
- 2.5Теплофикационная установка тэц
- 2.6Система технического водоснабжения
- 2.6.1Описание системы циркуляционного техводоснабжения
- 2.7Топливно-транспортное хозяйство
- 2.8Электротехническое оборудование
- 2.9Режимы работы тэц
- 3Существующее состояние Томской прк
- 3.1Краткая характеристика и основные показатели прк
- 3.2Котельное оборудование прк
- 3.2.1Котел кв-гм-140-150н (ст. № 1)
- 3.2.2Котел птвм-100 (ст. №№ 2, 3)
- 3.2.3Котел птвм-180 (ст. №№ 4, 5, 6)
- 3.2.4Котел де 25-14 гм (ст. № 7)
- 3.3Теплофикационная установка прк
- 3.4Система технического водоснабжения
- 3.5Топливно-транспортное хозяйство
- 3.5.1Характеристика сжигаемого топлива
- 3.5.2Мазутное хозяйство
- 3.5.3Газовое хозяйство
- 3.6Электротехническое оборудование
- 3.7Режимы работы прк
- 4Концепция развития тэц и прк. Перспективные тепловые и электрические нагрузки тэц
- 4.1Перспективные электрические нагрузки
- 4.2Перспективные тепловые нагрузки
- 4.3Перечень предлагаемых вариантов развития
- 4.4Установка паровой турбины №2 на тэц-3 для использования паровой мощности существующих энергетических котлов
- 4.4.1Предлагаемая концепция расширения Томской тэц-3 строительством паровой турбины т-60/65-130
- 4.4.2Основные технические характеристики турбины т-60/65-130
- 4.4.3Компоновочные решения. Выбор площадки размещения турбоагрегата
- 4.4.4Тепловая схема станции
- 4.4.5Выбор вспомогательного оборудования
- 4.4.6Система технического водоснабжения
- 4.4.7Водоподготовительные установки
- 4.4.8Строительная часть
- 4.4.9Электротехническая часть
- 4.4.10Генеральный план
- 4.5Установка пгу-220 на Томской тэц-3
- 4.5.1Газотурбинная установка (гту) гтэ-160 оао «Силовые машины»
- 4.5.2Горизонтальный котел-утилизатор двух давлений для работы за газовой турбиной типа гтэ-160 «Силовые машины»
- 4.5.3Турбина паровая теплофикационная для пгу-220 по типу т-60/73-7,8/0,04
- 4.5.4Компоновочные решения
- 4.5.5Тепловая схема пгу-220
- 4.5.6Система технического водоснабжения
- 4.5.7Водоподготовительные установки
- 4.5.8Газоснабжение
- 4.5.9Дожимная компрессорная станция
- 4.5.10Хозяйство аварийной подачи дизельного топлива
- 4.5.11Строительная часть
- 4.5.12Электротехническая часть
- 4.6Установка гту-тэц 110 мВт
- 4.6.1Газотурбинная установка гтэ-110
- 4.6.2Водогрейный котел с возможностью работы в блоке с гтэ-110
- 4.6.3Газоснабжение
- 4.6.4Дожимная компрессорная станция
- 4.6.5Хозяйство аварийной подачи дизельного топлива
- 4.6.6Водоподготовительная установка
- 4.6.7Электротехнические решения
- 4.7Установка двух гту-тэц 110 мВт каждая
- 4.7.1Газоснабжение
- 4.7.2Водоподготовительные установки
- 4.7.3Дожимная компрессорная станция
- 4.7.4Хозяйство аварийной подачи дизельного топлива
- 4.7.5Электротехнические решения
- 4.8Расширение Томской тэц-3 строительством турбины типа т-185/220-130 и котла типа е-500-140
- 4.8.1Паровая турбина Тп-185/220-130-2
- 4.8.2Котлоагрегат типа е-500-13,8
- 4.8.3Компоновочные решения. Выбор площадки размещения турбоагрегата
- 4.8.4Выбор вспомогательного оборудования
- 4.8.5Тепловая схема станции
- 4.8.6Система технического водоснабжения
- 4.8.7Водоподготовительные установки
- 4.8.8Электротехническая часть
- 4.9Перевод оборудования тэц-3 на уголь
- 4.9.1Основные предпосылки для перевода тэц-3 с газа на уголь
- 4.9.2Перевод существующих котлов 2×е-500-140 на уголь
- 4.9.3Вариант 2 – перевод существующего оборудования тэц-3 на сжигание березовского бурого угля, в том числе котлов пвк
- 4.9.4Топливно-транспортное хозяйство
- 4.10Установка гту-16 с котлом-утилизатором без дожигания/ с дожиганием (порядка 100 Гкал/ч) на прк в рамках дпм
- 4.10.1Мощность и режим работы гту-16 с котлом-утилизатором без дожигания/с дожиганием
- 4.10.2Технологические решения
- 4.10.2.1Газотурбинная установка
- 4.10.2.2Водогрейный котел с возможностью работы в блоке с гт
- 4.10.3Генеральный план
- 4.10.4Компоновочные решения
- 4.10.5Тепловая схема
- 4.10.6Топливное хозяйство
- 4.10.7Система технического водоснабжения
- 4.10.8Водоподготовительные установки (впу)
- 4.10.9Архитектурно-строительные решения
- 4.10.10Электротехническая часть
- 4.11Оптимизация состава оборудования прк с учетом проекта по дпм, предпочтительных вариантов развития тэц-3 и имеющихся тепловых нагрузок
- 4.12Внедрение двухконтурной схемы сетевой воды (выделение котельного контура)
- 5План – график реализации проекта
- 6Капиталовложения в строительство
- 7Оценка экономической эффективности
- 7.1Основные технико-экономические показатели
- 7.2Нормативно-методическая база
- 7.3Макроэкономическое окружение
- 7.4Система налогообложения
- 7.5Ставка дисконтирования
- 7.6Инвестиции в строительство
- 7.7Источники финансирования
- 7.8Общие данные для расчета экономической эффективности
- 7.8.1Амортизационные отчисления
- 7.8.2Затраты на ремонт
- 7.8.3Стоимости и тарифы
- 7.8.4Темпы роста нерегулируемых цен на «новую» мощность
- 7.9Экономическая эффективность проекта строительства турбины т-60
- 7.11Экономическая эффективность проекта установки пгу-220
- 7.12Экономическая эффективность проекта строительства гту-тэц с газовой турбиной 110 мВт
- 7.13Экономическая эффективность проекта строительства двух гту-тэц с газовыми турбинами 110 мВт и тепловой магистрали
- 7.14Выводы по окупаемости проектов установки нового генерирующего оборудования
- 7.15Экономическая эффективность проектов по переводу Томской тэц-3 с газа на сжигание угля
- 7.16Анализ чувствительности
- 8Заключение
- 9Приложения и чертежи