4.5.2. Гидрогенераторы
Гидравлическим генератором называется машина, преобразующая механическую энергию вращения гидротурбины в электрическую энергию.
Эти машины приводятся во вращение, как правило, сравнительно тихоходными гидравлическими турбинами, частота вращения которых составляет 50–500 об/мин. Поэтому гидрогенераторы выполняют с большим числом полюсов и явнополюсными роторами. Диаметр ротора достигает у мощных машин 16 м при длине 1,75 м (в генераторах мощностью 590–640 МВА), т.е. для таких генераторов отношение длины к диаметру составляет 0,11–0,20.
Гидрогенераторы мощностью свыше нескольких десятков МВА выполняют с вертикальным расположением вала. Гидрогенераторы с меньшей мощностью выполняют обычно с горизонтальным расположением вала.
В верхней части гидрогенератора на одном с ним валу обычно устанавливают вспомогательные машины – возбудитель генератора с подвозбудителем и дополнительный синхронный генератор, предназначенный для питания электродвигателей автоматического регулятора турбины.
В конструкции гидрогенераторов с вертикальным расположением вала весьма ответственной частью является упорный подшипник (подпятник), который воспринимает массу роторов генератора и турбины, давление воды на лопасти турбины, а также динамические усилия. Подпятник состоит из вращающегося диска (пяты), укрепленного на роторе, который посредством ряда сегментов (сухарей) опирается на стальной диск, установленный в корпусе подпятника. Сегменты покрывают слоем антифрикционного сплава (баббита), а корпус заполняют маслом, которое создает жидкостное трение в подпятнике и служит охлаждающей средой, обеспечивающей отвод образующейся теплоты к водяному маслоохладителю.
В зависимости от расположения подпятника гидрогенераторы подразделяют на подвесные и зонтичные (рис. 4.8).
В подвесных гидрогенераторах подпятник располагается над ротором генератора на верхней крестовине, а один или два направляющих подшипника – под ним; при этом весь турбоагрегат подвешен на подпятнике к этой крестовине (см. рис. 4.8, а).
В зонтичных гидрогенераторах подпятник располагается под ротором на нижней крестовине или на крышке турбины, а генератор – над подпятником в виде зонта. Крестовины представляют собой мощную опорную конструкцию, состоящую из центральной втулки и ряда радиальных балок (см. рис. 4.8, б). Быстроходные гидрогенераторы обычно выполняют подвесного типа, а тихоходные – зонтичного.
Рис. 4.8. Конструктивные схемы подвесного (а) и зонтичного (б)
гидрогенераторов: 1– верхняя крестовина;2– подпятник;
3– направляющие подшипники;4– ротор;5– статор;
6– нижняя крестовина;7– фланец вала;8– турбина;
9– фундамент;10– направляющий подшипник турбины
В последнее время стали применяться горизонтальные агрегаты (капсульные), у которых генератор заключен в герметичную капсулу, обтекаемую водой. Благодаря лучшим гидравлическим условиям обтекания КПД таких агрегатов больше 95 %.
Промышленность РФ выпускает различные типы гидрогенераторов мощностью до 640 МВА.
Для уменьшения габаритов, массы и стоимости гидрогенераторов в машинах большой мощности применяют непосредственное охлаждение обмоток статора, ротора и сердечника статора дистиллированной водой. При тех же основных размерах мощность гидрогенератора с водяным охлаждением можно увеличить более чем в 2 раза по сравнению с гидрогенератором, имеющим поверхностное воздушное охлаждение.
Непосредственное водяное охлаждение обмоток статора и ротора осуществляется так же, как в турбогенераторах – путем пропускания воды через полые проводники обмоток. Сердечник статора охлаждается водой, циркулирующей по трубам, которые проходят сквозь отверстия в листах непосредственного охлаждения.
В последнее десятилетие появились принципиально новые вращающиеся машины системы Powerformer, представляющие собой генераторы, которые работают на значительно более высоких, чем обычные генераторы, напряжениях. Они подключаются непосредственно к сети до 110 кВ и выше. Эти разработки проводятся шведскими отделениями компании АВВ и опробуются на электростанциях в Швеции.
Непосредственное соединение генератора с электрической сетью дает возможность:
снизить активные потери в шинопроводах, распределительном устройстве и повышающем трансформаторе;
повысить КПД системы Powerformer на 0,5–0,2 %;
уменьшить реактивную составляющую мощности за счет исключения трансформатора, наличие которого уменьшает коэффициент мощности и снижает полезную мощность генератора;
сократить число компонентов схемы: исключаются выключатель, шины и трансформатор среднего напряжения, а также соответствующие измерительные трансформаторы;
повысить коэффициент готовности вследствие сокращения числа компонентов схемы и высокой надежности самого генератора;
снизить расходы на обслуживание благодаря меньшему числу компонентов схемы и тому, что Powerformer сам по себе не требует большого ухода;
проектировать электростанцию более компактно, сократив тем самым объемы строительных работ.
- В.П. Казанцев Общая энергетика
- Оглавление
- 4.6. Природоохранные проблемы гидроэнергетики и их учет при проектировании гэс ……………….. 182
- Принятые сокращения
- Введение
- 1. Общие вопросы энергетики
- 1.1. Энергетические ресурсы земли и их использование
- 1.2. Топливно–энергетический комплекс России
- Единая энергетическая система России
- Преимущества образования еэс заключаются в повышении его экономичности при одновременном повышении надежности и качества электроснабжения потребителей.
- 1.4. Электрические станции
- 1.5. Электрические и тепловые сети
- 1.6. Потребители электрической энергии
- 1.7. Графики электрических и тепловых нагрузок энергосистем
- 1.8. Балансы мощности и энергии энергосистем
- 1.9. Традиционное топливо и его характеристики
- Теоретические основы работы энергетических установок
- 2.1. Теплопередача, виды теплообмена
- 2.2. Основные термодинамические процессы и законы (начала) термодинамики
- Термодинамические циклы тепловых двигателей
- 2.3.1. Термодинамический цикл Карно
- 2.3.2. Термодинамический цикл Ранкина
- 2.3.3. Энергетические показатели цикла Ранкина
- Тепловые и атомные энергетические установки
- 3.1. Тепловые электростанции
- 3.1.1. Тепловые схемы тэс
- 3.1.1.1. Тепловые схемы кэс
- 3.1.1.2. Когенерация. Тепловые схемы тэц
- 3.1.2. Технологические схемы тэс
- 3.1.3. Компоновочные схемы тэс
- 3.1.4. Основное оборудование тэс
- 3.1.4.1. Паровые котлы
- 3.1.4.2. Паровые турбины
- 3.1.4.3. Электрические генераторы и трансформаторы
- 3.1.5. Вспомогательное оборудование тэс
- 3.1.5.1. Насосы и газодувные машины
- 3.1.5.2. Главные паропроводы и питательные трубопроводы тэс
- 3.1.5.3. Системы регенеративного подогрева питательной воды и промежуточного перегрева
- 3.1.5.4. Системы подогрева сетевой воды
- 3.2. Атомные электростанции
- 3.2.1. Принцип действия и типы атомных электростанций
- 3.2.2. Ядерные реакторы
- 3.2.2.1. Принцип работы и классификация ядерных реакторов
- 3.2.2.2. Реакторы на тепловых и быстрых нейтронах
- 3.2.3. Ядерное топливо
- 3.2.4. Тепловые схемы аэс
- 3.2.5. Технологические схемы и компоновка аэс
- 3.2.6. Экономические аспекты атомной энергетики
- 3.2.7. Экология атомной энергетики
- 3.2.8. Перспективы развития ядерной и термоядерной энергетики
- 4. Гидроэнергетические установки
- 4.1. Гидростатика и гидродинамика
- 4.2. Гидроэнергоресурсы и состояние гидроэнергетики России
- 4.3. Классификация, принцип работы и характеристики гидроэнергетических установок
- 4.4. Схемы использования гидравлической энергии
- 4.5. Основное оборудование гэс
- 4.5.1. Гидротурбины
- 4.5.2. Гидрогенераторы
- 4.6. Природоохранные проблемы гидроэнергетики и их учет при проектировании гэс
- 5. Нетрадиционные источники энергии и их использование
- 5.1. Состояние и перспективы нетрадиционной энергетики
- 5.2. Энергия ветра и ветроэлектрические станции
- 5.2.1. Ветроэнергетические установки
- 5.2.2. Основные проблемы и перспективы ветроэнергетики
- 5.3. Энергия Земли и геотермальные электростанции
- 5.4. Энергия Мирового океана и ее использование
- 5.4.1. Гидротермальные электростанции
- 5.4.2. Волновые электростанции
- 5.4.3. Приливные электростанции
- 5.4.4. Электростанции морских течений
- 5.5. Энергия Солнца и солнечные электростанции
- 5.6. Водородная энергетика
- 5.7. Вторичные энергоресурсы
- 5.8. Биомасса как возобновляемый источник энергии
- Прямое сжигание биомассы
- 2. Получение биогаза
- 3. Использование отходов сельскохозяйственного производства
- Заключение
- Список литературы