2. Получение биогаза
В нетрадиционной энергетике особое место занимает переработка биомассы (органических сельскохозяйственных и бытовых отходов) метановым брожением с получением биогаза, содержащего около 70 % метана, и обеззараженных органических удобрений. Чрезвычайно важна утилизация биомассы в сельском хозяйстве, где на различные технологические нужды расходуется большое количество топлива и непрерывно растет потребность в высококачественных удобрениях. Всего в мире в настоящее время используется или разрабатывается около 60–ти разновидностей биогазовых технологий.
Биогаз – это смесь метана и углекислого газа, образующаяся в процессе анаэробного сбраживания в специальных реакторах – метантанках, устроенных и управляемых таким образом, чтобы обеспечить максимальное выделение метана. Энергия, получаемая при сжигании биогаза, может достигать 60–90 % энергии исходного материала. Очень важное достоинство процесса переработки биомассы состоит в том, что в ее отходах содержится значительно меньше болезнетворных микроорганизмов, чем в исходном материале.
Получение биогаза экономически оправдано и является предпочтительным при переработке постоянного потока отходов (стоки животноводческих ферм, скотобоен, растительных отходов и т.д.). Экономичность заключается в том, что нет нужды в предварительном сборе отходов, в организации и управлении их подачей; при этом известно, сколько и когда будет получено отходов.
Получение биогаза, возможное в установках самых разных масштабов, особенно эффективно на агропромышленных комплексах, где существует возможность полного экологического цикла. Биогаз используют для освещения, отопления, приготовления пищи, для приведения в действие механизмов, транспорта, электрогенераторов.
Подсчитано, что годовая потребность в биогазе для обогрева жилого дома составляет около 45 м3 на 1 м2 жилой площади, суточное потребление при подогреве воды для 100 голов крупного рогатого скота – 5–6 м3. Потребление биогаза при сушке сена (1 т) влажностью 40 % равно 100 м3, 1 т зерна – 15 м3, для получения 1 кВт·ч электроэнергии – 0,7–0,8 м3.
Следует отметить, что смесь биогаза и природного газа в соотношении 1:10 является по своим характеристикам полностью взаимозаменяемой с природным газом.
Биогаз может использоваться в качестве топлива для когенерационных установок.
Когенерационные установки представляют собой оборудование для комбинированного производства тепла и электроэнергии. B установках малой мощности применяются преимущественно поршневые двигатели внутреннего сгорания, приспособленные для сжигания газового топлива. Главным топливом бывает природный газ, но все чаще применяются и альтернативные виды топлива, прежде всего различные виды биогаза. Биогаз можно получать с помощью биогазовых станций, сооруженных около водоочистительных станций, свалок коммунальных отходов или земледельческих организаций, специализирующихся в животноводческом производстве.
Наряду с производством тепла при сжигании биогаза, например, в котлах, когенерация предлагает и возможность производства электрической энергии, которая может быть использована для собственных нужд объекта или может продаваться в общую распределительную сеть. Производство электроэнергии для собственных нужд в этом случае приходится значительно дешевле по сравнению с покупкой ее из сети, а в случае ее продажи можно воспользоваться выгодными тарифами для электроэнергии, произведенной из обновительных источников энергии. Поскольку биогаз является сопроводительным продуктом при переработке органических отходов, затраты по эксплуатации установки будут связаны только с отчислениями на оборудование и на сервисное обслуживание. Доходы будут составлять как сэкономленные средства за тепло и электроэнергию, так и средства за продажу электричества в сеть.
Для того чтобы когенерационная установка могла работать на биогазе с ожидаемым экономическим эффектом, нужно уточнить следующее.
Каковы свойства биогаза? Свойства биогаза являются решающим фактором для его применения с точки зрения вредных веществ и энергетического содержания (теплотворности). Важной считается следующая информация:
содержание метана (лучше полный состав газа);
постоянство качества газа;
содержание вредных веществ.
Какой объем газа и способ его улавливания в газгольдер? Объем улавливаемого газа влияет на выбор типа когенерационной установки.
Какова доступность газопровода? Если есть возможность подсоединения к газопроводу, можно использовать двухтопливную когенерационную установку для комбинированного использования как природного газа, так и биогаза (переключение топлива). Это выгодно при нерегулярном объеме подаваемого биогаза. При низком качестве биогаза можно его обогатить смешиванием с природным газом.
Какие требования предоставляются к способу работы когенерационной установки? Будет она работать параллельно с сетью или будет целесообразно использовать ее и в качестве аварийного источника электроэнергии, или эксплуатировать ее в автономном режиме?
Какой действительный расход энергии объекта и ее цена? Эти данные важно знать для выбора подходящего типа когенерационной установки и способа ее эксплуатации.
Свойства биогаза являются одним из главных параметров, которые влияют на пригодность его использования в качестве топлива для двигателя когенерационной установки. Некоторые свойства могут значительно повысить цену целого проекта, или сделать его невозможным. Поэтому к оценке биогаза следует приступать с полной ответственностью. При его оценке следует знать следующие свойства:
1) Содержание метана CH4: нормальное содержание 55–65 %. Минимальной считается 50–процентная концентрация.
2) Давление биогаза: давление газа при сжигании в когенерационной установке находится в пределах от 1,5 до 10 кПа.
3) Постоянство качества газа (константный состав и давление биогаза): оказывает влияние на стабильность работы и количество выпускаемых эмиссий.
4) Содержание вредных веществ (прежде всего соединения серы, флора и хлора): эти соединения могут вызвать коррозию компонентов всасывающего тракта и внутренних частей двигателя, соприкасающихся со смазочным маслом. При более высоком содержании серы является целесообразным устанавливать сероочиститель.
- В.П. Казанцев Общая энергетика
- Оглавление
- 4.6. Природоохранные проблемы гидроэнергетики и их учет при проектировании гэс ……………….. 182
- Принятые сокращения
- Введение
- 1. Общие вопросы энергетики
- 1.1. Энергетические ресурсы земли и их использование
- 1.2. Топливно–энергетический комплекс России
- Единая энергетическая система России
- Преимущества образования еэс заключаются в повышении его экономичности при одновременном повышении надежности и качества электроснабжения потребителей.
- 1.4. Электрические станции
- 1.5. Электрические и тепловые сети
- 1.6. Потребители электрической энергии
- 1.7. Графики электрических и тепловых нагрузок энергосистем
- 1.8. Балансы мощности и энергии энергосистем
- 1.9. Традиционное топливо и его характеристики
- Теоретические основы работы энергетических установок
- 2.1. Теплопередача, виды теплообмена
- 2.2. Основные термодинамические процессы и законы (начала) термодинамики
- Термодинамические циклы тепловых двигателей
- 2.3.1. Термодинамический цикл Карно
- 2.3.2. Термодинамический цикл Ранкина
- 2.3.3. Энергетические показатели цикла Ранкина
- Тепловые и атомные энергетические установки
- 3.1. Тепловые электростанции
- 3.1.1. Тепловые схемы тэс
- 3.1.1.1. Тепловые схемы кэс
- 3.1.1.2. Когенерация. Тепловые схемы тэц
- 3.1.2. Технологические схемы тэс
- 3.1.3. Компоновочные схемы тэс
- 3.1.4. Основное оборудование тэс
- 3.1.4.1. Паровые котлы
- 3.1.4.2. Паровые турбины
- 3.1.4.3. Электрические генераторы и трансформаторы
- 3.1.5. Вспомогательное оборудование тэс
- 3.1.5.1. Насосы и газодувные машины
- 3.1.5.2. Главные паропроводы и питательные трубопроводы тэс
- 3.1.5.3. Системы регенеративного подогрева питательной воды и промежуточного перегрева
- 3.1.5.4. Системы подогрева сетевой воды
- 3.2. Атомные электростанции
- 3.2.1. Принцип действия и типы атомных электростанций
- 3.2.2. Ядерные реакторы
- 3.2.2.1. Принцип работы и классификация ядерных реакторов
- 3.2.2.2. Реакторы на тепловых и быстрых нейтронах
- 3.2.3. Ядерное топливо
- 3.2.4. Тепловые схемы аэс
- 3.2.5. Технологические схемы и компоновка аэс
- 3.2.6. Экономические аспекты атомной энергетики
- 3.2.7. Экология атомной энергетики
- 3.2.8. Перспективы развития ядерной и термоядерной энергетики
- 4. Гидроэнергетические установки
- 4.1. Гидростатика и гидродинамика
- 4.2. Гидроэнергоресурсы и состояние гидроэнергетики России
- 4.3. Классификация, принцип работы и характеристики гидроэнергетических установок
- 4.4. Схемы использования гидравлической энергии
- 4.5. Основное оборудование гэс
- 4.5.1. Гидротурбины
- 4.5.2. Гидрогенераторы
- 4.6. Природоохранные проблемы гидроэнергетики и их учет при проектировании гэс
- 5. Нетрадиционные источники энергии и их использование
- 5.1. Состояние и перспективы нетрадиционной энергетики
- 5.2. Энергия ветра и ветроэлектрические станции
- 5.2.1. Ветроэнергетические установки
- 5.2.2. Основные проблемы и перспективы ветроэнергетики
- 5.3. Энергия Земли и геотермальные электростанции
- 5.4. Энергия Мирового океана и ее использование
- 5.4.1. Гидротермальные электростанции
- 5.4.2. Волновые электростанции
- 5.4.3. Приливные электростанции
- 5.4.4. Электростанции морских течений
- 5.5. Энергия Солнца и солнечные электростанции
- 5.6. Водородная энергетика
- 5.7. Вторичные энергоресурсы
- 5.8. Биомасса как возобновляемый источник энергии
- Прямое сжигание биомассы
- 2. Получение биогаза
- 3. Использование отходов сельскохозяйственного производства
- Заключение
- Список литературы