4.11. Пгу. Их классификация. Достоинства и недостатки.
1) По назначению ПГУ подразделяют на:
- конденсационные;
- теплофикационные.
Первые вырабатывают только электрическую энергию, вторые – служат для нагрева сетевой воды в подогревателях, подключаемых к паровой турбине.
2) По количеству рабочих тел, используемых в ПГУ, их делят на:
- бинарные;
- монарные.
В бинарных установках рабочие тела газотурбинного цикла (воздух и продукты сгорания топлива) и паротурбинной установки (воды и водяной пар) разделены.
В монарных установках рабочим телом турбины является смесь продуктов сгорания и водяные пары.
Рисунок 4.11.1. Схема монарной ПГУ: 1 – компрессор, 2 – камера сгорания, 3 – парогазовая турбина, 4 – котел – утилизатор, 5 – насос, 6 – подогреватель воды.
Рисунок 4.11.2. Схема бинарной ПГУ.
Достоинства:
1) ПГУ – самый экономичный двигатель, используемый для получения электрической энергии.
2) ПГУ – самый экологически чистый двигатель.
3) ПГУ – очень маневренный двигатель, с которым в маневренности может сравниться только автономная ГТУ.
4) Потребление охлажденной воды ПГУ примерно втрое меньше, чем на паросиловой установке при одинаковой мощности.
5) ПГУ имеют меньший строительный цикл, чем ПТУ.
Недостатки:
Практически не имеют, скорее следует говорить об определенных ограничениях и требованиях к оборудованию и топливу.
Большинство ПГУ относится к ПГУ бинарного типа. Существующие бинарные ПГУ можно разделить на пять типов:
Утилизационные ПГУ. В этих установках тепло уходящих газов ГТУ утилизируется в котлах-утилизаторах с получением пара высоких параметров, используемого в паротурбинном цикле. Главными преимуществами утилизационных ПГУ по сравнению с ПТУ являются высокая экономичность (в ближайшие годы их КПД превысит 60 %), существенно меньшие капиталовложения, меньшая потребность в охлаждающей воде, малые вредные выбросы, высокая маневренность. Как показано выше, утилизационные ПГУ требуют высокоэкономичных высокотемпературных газовых турбин с высокой температурой уходящих газов для генерирования пара высоких параметров для паротурбинной установки (ПТУ). Современные ГТУ, отвечающие этим требованиям, пока могут работать либо на природном газе, либо на легких сортах жидкого топлива.
ПГУ со сбросом выходных газов ГТУ в энергетический котел. Часто такие ПГУ называют кратко «сбросными», или ПГУ с низконапорным парогенератором (рис. 4.11.3). В них тепло уходящих газов ГТУ, содержащих достаточное количество кислорода, направляется в энергетический котел, замещая в нем воздух, подаваемый дутьевыми вентиляторами котла из атмосферы. При этом отпадает необходимость в воздухоподогревателе котла, так как уходящие газы ГТУ имеют высокую температуру. Главным преимуществом сбросной схемы является возможность использования в паротурбинном цикле недорогих энергетических твердых топлив.
Рисунок 4.11.3. Схема сбросной ПГУ
В сбросной ПГУ топливо направляется не только в камеру сгорания ГТУ, но и в энергетический котел (рис. 4.11.3), причем ГТУ работает на легком топливе (газ или дизельное топливо), а энергетический котел — на любом топливе. В сбросной ПГУ реализуется два термодинамических цикла. Теплота, поступившая в камеру сгорания ГТУ вместе с топливом, преобразуется в электроэнергию так же, как и в утилизационной ПГУ, т.е. с КПД на уровне 50 %, а теплота, поступившая в энергетический котел — как в обычном паротурбинном цикле, т.е. с КПД на уровне 40 %. Однако достаточно высокое содержание кислорода в уходящих газах ГТУ, а также необходимость иметь за энергетическим котлом малый коэффициент избытка воздуха приводят к тому, что доля мощности паротурбинного цикла составляет примерно 2/3, а доля мощности ГТУ — 1/3 (в отличие от утилизационной ПГУ, где это соотношение обратное). Поэтому КПД сбросной ПГУ составляет примерно
(4.11.1)
т.е. существенно меньше, чем у утилизационной ПГУ. Ориентировочно можно считать, что в сравнении с обычным паротурбинным циклом экономия топлива при использовании сбросной ПГУ примерно вдвое меньше, чем экономия топлива в утилизационной ПГУ.
Кроме того, схема сбросной ПГУ оказывается очень сложной, так как необходимо обеспечить автономную работу паротурбинной части (при выходе из строя ГТУ), а поскольку воздухоподогреватель в котле отсутствует (ведь в энергетический котел при работе ПГУ поступают горячие газы из ГТУ), то необходима установка специальных калориферов, нагревающих воздух перед подачей его в энергетический котел.
- Ведение. Развитие энергетики в мире.
- Раздел 1. Техническая термодинамика.
- 1.1. Предмет термодинамики.
- 1.2. Основные термодинамические параметры состояния.
- 1.3. Виды и формы обмена энергией.
- 1.4. Термодинамическая система. Термодинамическое равновесие.
- 1.5. Теплота и работа.
- 1.6. Уравнение состояния идеальных газов.
- 1.7. Газовая постоянная.
- 8. Смесь идеальных газов.
- 9. Первый закон термодинамики.
- 1.10. Обратимые и необратимые процессы.
- 1.11. Аналитическое выражение первого закона термодинамики.
- 1.12. Энтальпия.
- 1.13. Теплоемкость газов. Энтропия.
- 1.14. Удельная (массовая), объемная и молярная теплоемкость.
- 1.15. Теплоемкость при и . Уравнение Майера.
- 1.16. Средняя теплоемкость.
- 1.17. Термодинамические процессы идеальных газов.
- 18. Второй закон термодинамики.
- 1.19. Круговые термодинамические процессы.
- 1.20. Термодинамический кпд и холодильный коэффициент циклов.
- 1.21. Прямой обратимый цикл Карно.
- 1.22. Обратный обратимый цикл Карно.
- 1.23. Реальные газы. Водяной пар.
- 1.24. И диаграммы водяного пара.
- 1.25. Классификация холодильных установок, хладагенты и требования к ним.
- 1.26. Цикл воздушной холодильной установки.
- 1.27. Паровые компрессионные холодильные установки.
- 1.28. Циклы паротурбинных установок. Циклы Ренкина на насыщенном и перегретом паре.
- Раздел 2. Теплообменные процессы.
- 2.1. Основные виды переноса теплоты.
- 2.1.1. Передача тепла теплопроводностью. Закон Фурье.
- 2.2. Теплопроводность плоской стенки
- 2.2.1. Теплопроводность цилиндрической стенки трубы.
- 2.3. Конвективный теплообмен. Виды движения теплоносителей.
- 2.4. Критериальные уравнения конвективного теплообмена.
- 2.5. Динамический и тепловой пограничные слои.
- 2.6. Лучистый теплообмен. Поглощение, отражение и испускание лучистой энергии.
- Раздел 3. Теплообменные аппараты.
- 3.1. Классификация теплообменных аппаратов. Теплоносители.
- 3.1.1. Расчет рекуперативных Теплообменных аппаратов.
- Раздел 4. Традиционные способы выработки тепловой и электрической энергии.
- 4.1. Энергетика и электрогенерирующие станции
- 4.2. Типы тепловых электростанций. Классификация.
- 4.3. Технологический процесс преобразования химической энергии топлива в электроэнергию на тэс
- 4.4. Преимущества и недостатки тэс
- 4.5. Ресурсы, потребляемые аэс, ее продукция, отходы производства
- 4.6. Представление о ядерных реакторах различного типа
- 4.8. Технологические схемы производства электроэнергии на аэс.
- 4.9. Паровые турбины. Устройство паровой турбины
- 4.9.1. Проточная часть и принцип действия турбины
- 4.9.2. Конструкция основных узлов и деталей паровых турбин
- 4.9.3. Типы паровых турбин и область их использования
- 4.9.4. Основные технические требования к паровым турбинам и их характеристики
- 4.10. Гту. Устройство и принцип действия
- 4.11. Пгу. Их классификация. Достоинства и недостатки.
- 4.12. Котельные установки. Общие понятия и определения
- 4.13. Классификация котельных установок.
- 4.14. Каркас и обмуровка котла.
- 4.15. Тепловой и эксергетический балансы котла Общее уравнение теплового баланса
- 4.16. Схемы подачи воздуха и удаления продуктов сгорания
- 4.16.1 Естественная и искусственная тяга. Принцип работы дымовой трубы.
- 4.17. Сепарационные устройства
- 4.18. Пароперегреватели
- 4.19. Водяные экономайзеры ку. Назначение, конструкция, виды
- 4.20. Воздухоподогреватели ку. Назначение, конструкция, виды
- 4.21. Топливо, состав и технические характеристики топлива. Понятие условного топлива, высшей и низшей теплоты сгорания
- Раздел 5. Теплоснабжение.
- 5.1. Классификация систем теплоснабжения и тепловых нагрузок
- 5.2. Тепловые сети городов
- 5.3. Теплоэлектроцентрали
- 5.4. Преимущества раздельной и комбинированной выработки электроэнергии и тепла
- Раздел 6. Нагнетатели.
- 6.1. Классификация нагнетателей. Области применения
- 6.2 .Производительность, напор и давление, создаваемые нагнетателем
- 6.3. Мощность и кпд нагнетателей. Совместная работа насоса и сети
- Раздел 7. Двигатели внутреннего сгорания.
- 7.1. Классификация двигателей внутреннего сгорания
- 7.2. Принцип работы четырехтактного двигателя
- 7.3. Принцип работы двухтактного двигателя
- 7.4. Индикаторная диаграмма
- 7.5. История развития и параметры работы двс
- 7.6. Индикаторные диаграммы двс.
- Раздел 8. Нетрадиционные и возобновляемые источники энергии.
- 8.1. Нетрадиционные и возобновляемые источники энергии
- 8.2. Прямое преобразование солнечной энергии
- 8.3. Преобразование солнечной в электрический ток
- 8.4. Гидроэнергетика
- 8.5. Основные принципы использования энергии воды
- 8.6. Гидроэлектростанции
- 8.7. Энергия волн. Энергия приливов (приливные электростанции)
- 8.8. Преобразование тепловой энергии океана в механическую
- 8.9. Ветрогенераторы. Устройство, категории, типы. Преимущества и недостатки
- 8.10. Приливные электростанции
- 8.11. Водородная энергетика
- Принцип работы топливного элемента:
- Содержание.
- Раздел 1. Техническая термодинамика.
- Раздел 2. Теплообменные процессы
- Раздел 3. Теплообменные аппараты.
- Раздел 4. Традиционные способы выработки тепловой и электрической энергии.