7.1. Классификация двигателей внутреннего сгорания
Для двигателей внутреннего сгорания характерно большое разнообразие типов. По принципу действия двигатели внутреннего сгорания можно разделить на две основные группы: поршневые и лопаточные или ротативные.
Поршневые двигатели состоят в основном из цилиндра, в котором поршень совершает возвратно-поступательное движение, из кривошипно-шатунного механизма, преобразующего поступательное движение во вращательное, органов газораспределения и вспомогательных механизмов. Преобразование тепловой энергии в механическую работу у поршневых двигателей происходит не непрерывно, а последовательными циклами.
Лопаточные газотурбинные двигатели состоят в основном из неподвижного статора, в котором вращается ротор, представляющий собой вал с насаженными на него дисками. На дисках имеются лопатки, которые расположены или по окружности, или, на торцовых поверхностях дисков. В отличие от поршневых двигателей у газотурбинных преобразование тепловой энергии в механическую происходит не циклически, а непрерывно. Ниже будут рассматриваться преимущественно поршневые двигатели внутреннего сгорания и главным образом дизели.
Классификация и области применения двигателей внутреннего сгорания.
По роду применяемого топлива: двигатели внутреннего сгорания работающие на жидком, газовом, газожидкостном топливе.
В качестве газообразного топлива может применяться генераторный газ, вырабатываемый в газогенераторах из дров, торфа и угля, а также природный газ и другие газы, как, например, коксовый и пр. В качестве жидкого топлива используются главным образом нефтяные топлива, т. е. продукты переработки нефти — бензин, керосин, соляровое масло, моторное топливо, мазуты, а также продукты перегонки угля. Газожидкостные двигатели работают на смеси газообразных и жидких топлив. При этом основным топливом является газообразное, а жидкое расходуется в небольших количествах для зажигания газообразного топлива.
По способу осуществления цикла: - 4-х тактные
- 2-х тактные
У четырехтактных двигателей рабочий цикл совершается за два оборота коленчатого вала, т. е. за четыре хода поршня, а у двухтактных — за один оборот коленчатого вала, т. е. за два хода поршня. Каждое
Рис. 7.1.1. Конструктивные схемы двигателей внутреннего сгорания:
1 – однорядный двигатель с вертикальным расположением цилиндров; 2 – двигатель с V–образным расположением цилиндров; 3 – двигатель с W–образным расположением цилиндров; 4 – двигатель с горизонтальным оппозитным расположением цилиндров; 5 – двигатель с Н-образным горизонтальным расположением цилиндров; 6 – однорядный звездообразный двигатель; 7 – двухрядный звездообразный двигатель
По числу и расположению осей цилиндров: - одноцилиндровые и многоцилиндровые - вертикальные и горизонтальные - V – образные и др.
По быстроходности:
- тихоходные (средняя скорость поршня < 6,5 м/с)
- быстроходные (средняя скорость поршня > 6,5 м/с)
В зависимости от назначения двигатели внутреннего сгорания делятся на стационарные, судовые, авиационные, автомобильные, тракторные, тепловозные и другие. От назначения двигателя в большой мере зависят его технико-экономические показатели: масса, габариты, мощность.
.
По способу воспламенения топлива: - двигатели с принудительным зажиганием (от электрической искры)(карбюраторные двигатели).
- двигатели с самовоспламенением (от сжатия дизеля).
По степени сжатия: - двигатели низкого сжатия (двигатели с принудительным зажиганием) - двигатели высокого сжатия (двигатели с самовоспламенением)
По действию газа на поршень:
- двигатели простого действия - двигатели двойного действия.
Достоинства: высокий КПД, меньшие габариты и масса (по сравнению с паротурбинными установками); малая потребность в воде; постоянная готовность к пуску.
Недостатки: ограниченные единичные мощности, т.к. при больших мощностях требуется большее число оборотов, что приводит к увеличению габаритов и массы и снижению надежности; невозможность использования местных и низкосортных твердых топлив; трудность использования отработавшей энергии д.в.с.
Области применения
- транспортные и передвижные установки
- стационарные установки малой и средней мощности (получение электричества)
- специальные установки (в качестве резервных агрегатов) где не допустим перегрев в электропитании. Помимо двух основных групп двигателей внутреннего сгорания существуют комбинированные двигатели, состоящие из поршневого двигателя и газовой турбины, в которой используется энергия отработавших газов поршневой машины.
- Ведение. Развитие энергетики в мире.
- Раздел 1. Техническая термодинамика.
- 1.1. Предмет термодинамики.
- 1.2. Основные термодинамические параметры состояния.
- 1.3. Виды и формы обмена энергией.
- 1.4. Термодинамическая система. Термодинамическое равновесие.
- 1.5. Теплота и работа.
- 1.6. Уравнение состояния идеальных газов.
- 1.7. Газовая постоянная.
- 8. Смесь идеальных газов.
- 9. Первый закон термодинамики.
- 1.10. Обратимые и необратимые процессы.
- 1.11. Аналитическое выражение первого закона термодинамики.
- 1.12. Энтальпия.
- 1.13. Теплоемкость газов. Энтропия.
- 1.14. Удельная (массовая), объемная и молярная теплоемкость.
- 1.15. Теплоемкость при и . Уравнение Майера.
- 1.16. Средняя теплоемкость.
- 1.17. Термодинамические процессы идеальных газов.
- 18. Второй закон термодинамики.
- 1.19. Круговые термодинамические процессы.
- 1.20. Термодинамический кпд и холодильный коэффициент циклов.
- 1.21. Прямой обратимый цикл Карно.
- 1.22. Обратный обратимый цикл Карно.
- 1.23. Реальные газы. Водяной пар.
- 1.24. И диаграммы водяного пара.
- 1.25. Классификация холодильных установок, хладагенты и требования к ним.
- 1.26. Цикл воздушной холодильной установки.
- 1.27. Паровые компрессионные холодильные установки.
- 1.28. Циклы паротурбинных установок. Циклы Ренкина на насыщенном и перегретом паре.
- Раздел 2. Теплообменные процессы.
- 2.1. Основные виды переноса теплоты.
- 2.1.1. Передача тепла теплопроводностью. Закон Фурье.
- 2.2. Теплопроводность плоской стенки
- 2.2.1. Теплопроводность цилиндрической стенки трубы.
- 2.3. Конвективный теплообмен. Виды движения теплоносителей.
- 2.4. Критериальные уравнения конвективного теплообмена.
- 2.5. Динамический и тепловой пограничные слои.
- 2.6. Лучистый теплообмен. Поглощение, отражение и испускание лучистой энергии.
- Раздел 3. Теплообменные аппараты.
- 3.1. Классификация теплообменных аппаратов. Теплоносители.
- 3.1.1. Расчет рекуперативных Теплообменных аппаратов.
- Раздел 4. Традиционные способы выработки тепловой и электрической энергии.
- 4.1. Энергетика и электрогенерирующие станции
- 4.2. Типы тепловых электростанций. Классификация.
- 4.3. Технологический процесс преобразования химической энергии топлива в электроэнергию на тэс
- 4.4. Преимущества и недостатки тэс
- 4.5. Ресурсы, потребляемые аэс, ее продукция, отходы производства
- 4.6. Представление о ядерных реакторах различного типа
- 4.8. Технологические схемы производства электроэнергии на аэс.
- 4.9. Паровые турбины. Устройство паровой турбины
- 4.9.1. Проточная часть и принцип действия турбины
- 4.9.2. Конструкция основных узлов и деталей паровых турбин
- 4.9.3. Типы паровых турбин и область их использования
- 4.9.4. Основные технические требования к паровым турбинам и их характеристики
- 4.10. Гту. Устройство и принцип действия
- 4.11. Пгу. Их классификация. Достоинства и недостатки.
- 4.12. Котельные установки. Общие понятия и определения
- 4.13. Классификация котельных установок.
- 4.14. Каркас и обмуровка котла.
- 4.15. Тепловой и эксергетический балансы котла Общее уравнение теплового баланса
- 4.16. Схемы подачи воздуха и удаления продуктов сгорания
- 4.16.1 Естественная и искусственная тяга. Принцип работы дымовой трубы.
- 4.17. Сепарационные устройства
- 4.18. Пароперегреватели
- 4.19. Водяные экономайзеры ку. Назначение, конструкция, виды
- 4.20. Воздухоподогреватели ку. Назначение, конструкция, виды
- 4.21. Топливо, состав и технические характеристики топлива. Понятие условного топлива, высшей и низшей теплоты сгорания
- Раздел 5. Теплоснабжение.
- 5.1. Классификация систем теплоснабжения и тепловых нагрузок
- 5.2. Тепловые сети городов
- 5.3. Теплоэлектроцентрали
- 5.4. Преимущества раздельной и комбинированной выработки электроэнергии и тепла
- Раздел 6. Нагнетатели.
- 6.1. Классификация нагнетателей. Области применения
- 6.2 .Производительность, напор и давление, создаваемые нагнетателем
- 6.3. Мощность и кпд нагнетателей. Совместная работа насоса и сети
- Раздел 7. Двигатели внутреннего сгорания.
- 7.1. Классификация двигателей внутреннего сгорания
- 7.2. Принцип работы четырехтактного двигателя
- 7.3. Принцип работы двухтактного двигателя
- 7.4. Индикаторная диаграмма
- 7.5. История развития и параметры работы двс
- 7.6. Индикаторные диаграммы двс.
- Раздел 8. Нетрадиционные и возобновляемые источники энергии.
- 8.1. Нетрадиционные и возобновляемые источники энергии
- 8.2. Прямое преобразование солнечной энергии
- 8.3. Преобразование солнечной в электрический ток
- 8.4. Гидроэнергетика
- 8.5. Основные принципы использования энергии воды
- 8.6. Гидроэлектростанции
- 8.7. Энергия волн. Энергия приливов (приливные электростанции)
- 8.8. Преобразование тепловой энергии океана в механическую
- 8.9. Ветрогенераторы. Устройство, категории, типы. Преимущества и недостатки
- 8.10. Приливные электростанции
- 8.11. Водородная энергетика
- Принцип работы топливного элемента:
- Содержание.
- Раздел 1. Техническая термодинамика.
- Раздел 2. Теплообменные процессы
- Раздел 3. Теплообменные аппараты.
- Раздел 4. Традиционные способы выработки тепловой и электрической энергии.