4.1.3 Область безопасной работы и защита ключей
Область допустимых значений электрических параметров ключа, при которых он может работать без повреждения, называется областью безопасной работы (ОБР). Эта область ограничивается предельными значениями тока, напряжения и допустимой мощности потерь ключа, которые определяются электронными и тепловыми процессами, протекающими в конкретном приборе с учетом условий его эксплуатации. Иногда эту область называют областью максимальных режимов.
Общепринятым является графическое изображение этой области в прямоугольных координатах, по оси ординат которых откладывается ток ключа, а по оси абсцисс – напряжение.
На рис. 4.1.2 представлена область безопасной работы ключа, ограниченная допустимыми значениями IS, US, и РS. ОБР ограничена тремя линейными участками: аб – предельным значением тока IS max, бв – предельной мощностью потерь PS max, и вг – предельным значением напряжения US max.
Рис. 4.1.2 Область безопасной работы ключа
Границы ОБР зависят от длительности включенного состояния и частоты коммутации ключа. Например, граница ОБР при редких импульсах включения будет проходить выше границы при длительных включениях (на рис. 4.1.2 эта граница показана штриховой линией).
По определению ОБР мгновенные значения uS и iS ключа в любой момент времени во всех режимах работы, включая процесс коммутации, не должны выходить из области ОБР. Это значит, что статические и динамические ВАХ ключа должны находиться внутри ОБР. В противном случае надежная работа ключевого прибора будет невозможна. Наличие емкостей в коммутируемых цепях приводит к существенному всплеску тока, а при включении индуктивностей – к всплеску напряжения при выключении. Поэтому для надежной работы ключа необходимо обеспечить соответствие динамической ВАХ и ОБР.
Так как динамическая ВАХ представляет собой траекторию переключения ключа в координатах iS и uS , то включение дополнительных элементов в целях изменения динамической ВАХ можно рассматривать как формирование желаемой (в соответствии с ОБР) траектории переключения. Совокупность элементов, введенных для формирования желаемой траектории переключения, называется цепью формирования траектории переключения (ЦФТП). Таким образом, ЦФТП является устройством защиты ключа в динамических работы.
Схемотехника ЦФТП определяется типом полупроводникового прибора, а также топологией и параметрами коммутируемой цепи. Основой ЦФТП являются реактивные элементы емкостного или индуктивного характера. Это обусловлено тем, что конденсатор способен ограничивать значение и скорость нарастания напряжения на ключе в процессе коммутации, а индуктивность – значение и скорость изменения коммутируемого тока. При этом реактивные элементы поглощают энергию за время коммутации. Эта энергия рассеивается в активных элементах ЦФТП, либо возвращается в источник или цепь нагрузки.
На рис. 4.1.3 представлены упрощенные схемы ЦФТП. Схемы а) и в) используются для формирования требуемых ВАХ при коммутации активно-емкостной нагрузки. Соответствующие динамические ВАХ в схеме с ЦФТП и без неё представлены на рис. 4.1.3., б,г.
Рис. 4.1.3. Цепи формирования траектории переключения
Обычно применяются цепи формирования траектории переключения с более сложными схемотехническими решениями, что позволяет сформировать требуемые ВАХ как при включении, так и при выключении силовых электронных ключей.
- Политехнический институт Сибирского федерального университета электрические и электронные аппараты
- Введение
- 1. Основы теории электрических аппаратов
- 1.1.Электрические и электронные аппараты как средства управления режимами работы, защиты и регулирования параметров электротехнических и электроэнергетических систем
- 1.1.1. Назначение и классификация электрических аппаратов
- 1.1.2. Требования, предъявляемые к электрическим аппаратам
- 1.2. Физические явления в электрических аппаратах и основы теории электрических аппаратов
- 1.2.1. Электродинамические силы в электрических аппаратах
- 1.2.2. Методы расчета электродинамических усилий и направления их действия
- 1.2.3. Расчет электродинамических усилий
- 1.2.4. Электродинамические усилия при переменном токе
- 1.2.5. Электродинамическая стойкость аппаратов. Механический резонанс
- 1.2.6. Тепловые процессы в электрических аппаратах
- 1.2.7. Источники теплоты в электрических аппаратах
- 1.2.8. Способы распространения теплоты в электрических аппаратах
- 1.2.9. Задачи теплового расчета
- 1.2.10. Режимы работы электрических аппаратов
- 1.2.11. Нагрев электрических аппаратов при различных режимах работы
- 1.2.12. Нагрев электрических аппаратов при коротком замыкании. Термическая стойкость аппарата
- 1.2.13. Контактные явления и классификация электрических контактов
- 1.2.14. Контактная поверхность и контактное сопротивление
- 1.2.15. Математическая модель электрических контактов
- 1.2.16. Влияние переходного сопротивления контактов на нагрев проводников. Сваривание электрических контактов
- 1.2.17. Износ контактов
- 1.2.18. Материалы для контактных соединений
- 1.2.19. Коммутация электрической цепи
- 1.2.20. Включение электрической цепи
- 1.2.21. Отключение электрической цепи контактными аппаратами
- 1.2.22. Электрическая дуга
- 1.2.23. Статическая вольтамперная характеристика электрической дуги постоянного тока
- 1.2.24. Динамическая вольтамперная характеристика электрической дуги постоянного тока
- 1.2.25. Условия гашения дуги постоянного тока
- 1.2.26. Условия гашения электрической дуги переменного тока
- 1.2.27. Электрическая дуга в магнитном поле
- 1.2.28. Способы воздействия на электрическую дугу в коммутационных аппаратах
- 1.3. Электромагниты
- 1.3.1. Электромагниты и их магнитные цепи
- 1.3.2.Методы расчета электромагнитов
- 1.3.3. Тяговые силы в электромагнитах
- 1.3.4. Согласование тяговой характеристики электромагнита с механической нагрузкой. Коэффициент запаса
- 1.3.5. Сила тяги электромагнита переменного тока
- 1.3.6. Сравнение статических тяговых характеристик электромагнитов постоянного и переменного тока
- 1.3.7. Устранение вибрации якоря электромагнита переменного тока
- 1.3.8. Время срабатывания и отключения электромагнита и способы изменения его быстродействия
- 2. Электромеханические аппараты управления, автоматики, распределения электрической энергии и релейной защиты.
- 2.1.Электромеханические реле
- 2.1.1. Реле управления
- 2.1.2. Электромагнитные реле тока и напряжения
- 2.1.3. Реле времени
- 2.1.4. Поляризованные реле
- 2.1.5. Электромагнитные реле на герконах
- 2.1.6. Тепловые реле
- 2.1.7. Индукционные реле
- 2.2.Электромеханические датчики
- 2.2.1. Электромеханические датчики и требования, предъявляемые к ним
- 2.2.2. Пассивные датчики
- 2.2.3. Активные датчики
- 2.3. Электромеханические исполнительные устройства
- 2.3.1. Электромеханические исполнительные устройства и их характеристики
- 2.3.2. Конструкции исполнительных устройств
- 2.4. Плавкие предохранители
- 2.4.1. Принцип действия и устройство предохранителей
- 2.4.2. Основные параметры предохранителей
- 2.4.3. Время срабатывания и ампер-секундная характеристика предохранителя
- .2.4.4. Работа предохранителей при номинальном токе и токе короткого замыкания
- 2.4.5. Выбор предохранителей
- 2.5.Контакторы
- 2.5.1. Контакторы и их технические параметры
- 2.5.2. Устройство электромагнитных контакторов
- 2.5.3. Магнитные пускатели
- 2.5.4. Конструкции электромагнитных контакторов постоянного тока
- 2.5.5. Конструкции электромагнитных контакторов переменного тока
- 2.5.6. Жидкометаллические контакторы
- 2.5.7. Герметизированные контакторы
- 2.5.8. Синхронные контакторы
- 2.5.9. Гибридные контакторы
- 2.5.10. Расчет и выбор контакторов и пускателей
- 2.6. Автоматические воздушные выключатели низкого напряжения
- 2.6.1. Общие сведения
- 2.6.2. Принцип действия и основные узлы автоматических выключателей
- 2.6.3. Специальные типы автоматических выключателей
- 2.6.4. Выбор автоматического выключателя
- 2.7. Низковольтные комплектные устройства
- 2.7.1. Общие сведения о низковольтных комплектных устройствах
- 2.7.2. Режимы работы низковольтных комплектных устройств
- 2.7.3. Выбор габаритных размеров низковольтных комплектных устройств и особенности их монтажа
- 3. Аппараты высокого напряжения
- 3.1. Коммутационные аппараты высокого напряжения
- 3.1.1. Классификация аппаратов высокого напряжения и требования, предъявляемые к ним
- 3.1.2. Воздушные выключатели
- 3.1.3. Элегазовые выключатели
- 3.1.4. Масляные выключатели
- 3.1.5. Электромагнитные выключатели высокого напряжения
- 3.1.6. Вакуумные выключатели
- 3.1.7. Разъединители, отделители, короткозамыкатели
- 3.2.Измерительные трансформаторы высокого напряжения
- 3.2.1.Измерительные трансформаторы тока высокого напряжения
- 3.2.2. Трансформаторы напряжения
- 3.2.3. Защитные и токоограничивающие аппараты
- 3.3. Комплектные распределительные устройства высокого напряжения
- 3.3.1. Распределительные устройства закрытого и открытого типов
- 3.3.2. Комплектные распределительные устройства внутренней установки
- 3.3.3. Комплектные распределительные устройства наружной установки
- 3.3.4. Комплектные распределительные устройства с элегазовой изоляцией
- 4 Электронные и микропроцессорные аппараты
- 4.1 Общие сведения об электронных ключах и бездуговой коммутации
- 4.1.1 Электронные ключи
- 4.1.2 Статические и динамические режимы работы ключей
- 4.1.3 Область безопасной работы и защита ключей
- 4.2 Основные виды силовых электронных ключей
- 4.2.1 Силовые диоды
- 4.2.2 Защита силовых диодов
- 4.2.3 Основные типы силовых диодов
- 4.2.4 Силовые транзисторы
- 4.2.5 Тиристоры
- 4.2.6 Тиристор в цепи постоянного тока
- 4.2.7 Тиристор в цепи переменного тока
- 4.2.7 Запираемые тиристоры
- 4.2.8 Защита тиристоров
- 4.3 Модули силовых электронных ключей
- 4.3.1 Последовательное и параллельное соединение ключевых элементов
- 4.3.2 Типовые схемы модулей ключей
- 4.3.3 Igbt-модули
- 4.3.4 «Интеллектуальные» силовые интегральные схемы
- 4.3.5 Теплоотвод в силовых электронных приборах
- 4.3.6 Охлаждение силовых электронных ключей
- 4.4 Системы управления силовых электронных аппаратов
- 4.4.1 Общие сведения о системах управления
- 4.4.2 Основные принципы управления импульсными системами
- 4.4.3 Интегральные микросхемы в системах управления
- 4.4.4 Базовые цифровые имс
- 4.4.5 Базовые аналоговые имс
- 4.4.6 Компараторы напряжения
- 4.4.7 Усилители сигналов
- 4.4.8 Генераторы импульсов
- 4.5 Микропроцессоры в электрических аппаратах
- 4.5.1 Определения и особенности микропроцессора, микропроцессорной системы и микроконтроллера
- 4.5.2 Структура типичной микроЭвм
- 4.5.3 Классификация и структура микроконтроллеров
- 4.5.4 Основные особенности микроконтроллеров серии pic. Состав и назначение семейств pic-контроллеров
- 4.5.5 Микроконтроллеры семейств pic16cxxx и pic17cxxx
- 4.5.6 Особенности архитектуры микроконтроллеров семейства pic16cxxx
- 5 Статические коммутационные аппараты и регуляторы
- 5.1 Статические коммутационные аппараты и регуляторы постоянного тока
- 5.1.1 Тиристорные контакторы постоянного тока
- 5.1.2 Регуляторы-стабилизаторы постоянного тока
- 5.1.3 Параметрические стабилизаторы
- 5.1.4 Стабилизаторы непрерывного действия
- 5.1.5 Импульсные регуляторы
- 5.2 Статические коммутационные аппараты и регуляторы переменного тока
- 5.2.1 Тиристорные контакторы переменного тока
- 5.2.2 Регуляторы-стабилизаторы переменного тока
- Заключение
- Глоссарий Классификация электрических аппаратов
- Токоведущие и контактные детали электрических аппаратов
- Гашение электрической дуги
- Электрические аппараты ручного управления
- Электрические аппараты дистанционного управления Магнитная система электрических аппаратов постоянного и переменного тока
- Устройство и принцип действия электромагнитов
- Электромагнитные муфты и тормозные устройства
- Электромагнитные реле, пускатели и контакторы
- Электрические аппараты защиты
- Предохранители и тепловые реле
- Характеристики:
- Автоматические выключатели и токовые реле
- Бесконтактные электрические аппараты и датчики Датчики
- Основная и дополнительная литература Основная литература
- Дополнительная литература
- Оглавление