Электреты
Входы: нет.
Выходы: электрическое поле.
Графическая иллюстрация:
Рис. 2.45. Диэлектрики и электреты. а) - электрические диполи диэлектрика в отсутствие внешнего электрического поля б) - электрические диполи электрета в отсутствие внешнего
электрического поля
Сущность:
Электреты - диэлектрики, способные длительное время находиться в наэлектризованном состоянии (Рис.2.45) после снятия внешнего воздействия, вызвавшего поляризацию, и образовывать вокруг себя электрическое поле; электрические аналоги постоянных магнитов. В качестве электрета используют монокристаллические (корунд, сера) и поликристаллические (фарфор, керамика, стекла и др.) диэлектрики, полимеры , а также воски (пчелиный и карнаубский) и природные смолы. Стабильные электреты получают, нагревая, а затем охлаждая диэлектрик в сильном электрическом поле (термоэлектреты), освещая в сильном электрическом поле (фотоэлектреты), радиоактивным облучением (радиоэлектреты), поляризацией в сильном электрич. поле без нагревания (эдектроэлектреты) или в магнитном поле (магнетоэлектреты), при застывании органических растворов в электрическом поле (криоэлектреты), механической деформацией полимеров (механоэлектреты), трением (трибоэлектреты), действием поля коронного разряда (короноэлектреты).
Математическое описание:
Пусть вещество состоит из одинаковых молекул, каждая из которых обладает электрическим дипольным моментом. Модуль дипольного момента одинаков для всех молекул, а направление - у каждого момента свое. Если в единице объема вещества содержится n молекул, то суммарный дипольный момент вещества P:
P = n<p>, где
p - средний дипольный момент молекулы вещества.
Для большинства веществ в отсутствие внешнего электрического поля p=0, для "электретов" p≠ 0.
Во внешнем электрическом поле, как правило, p≠0. При этом имеют место два механизма поляризации вещества. У диэлектриков из неполярных молекул под действием внешнего электрического поля положительные заряды молекулы смещаются "по полю E", а отрицательные - "против поля E", и возникает электрический диполь, направленный по силовой линии векторного поля E. У диэлектриков из полярных молекул электрический момент отдельной молекулы стремится развернуться вдоль силовой линии векторного поля , E тем самым нарушается хаотическое распределение дипольных моментов молекул, которое существовало в отсутствие внешнего поля и приводило к отсутствию поляризации среды.
Применение:
Электреты применяют как источники постоянного электрического поля (электретные микрофоны и телефоны, вибродатчики, генераторы слабых переменных сигналов, электрометры, электростатические вольтметры и другие), а также как чувствительные датчики в дозиметрах, устройствах электрической памяти; для изготовления барометров, гигрометров и газовых фильтров, пьезодатчиков и других. Фотоэлектреты используют в электрофотографии.
-
Содержание
- В.А. Панов Автоматизация проектирвания средств и су. Физико-технические эффекты
- Введение
- Понятие фтэ
- 1.2. Формализация описания фтэ
- Дерево фтэ
- Синтез физического принципа действия
- Алгоритм синтеза фпд
- Классификация фтэ
- Описание фтэ
- 2.1. Механические эффекты
- 2.1.1. Центробежная сила
- 2.1.2. Гироскопический эффект
- 2.1.3. Гравитация
- 2.1.4. Электропластический эффект в металлах
- 2.2.Молекулярные явления
- 2.2.1. Тепловое расширение
- 2.2.2. Капиллярные явления
- 2.2.3. Фазовые переходы
- Гидростатика и гидродинамика
- 2.3.1. Сорбция
- 2.3.2. Диффузия
- 2.3.3. Осмос
- 2.3.4. Цеолиты
- Гидростатика и гидродинамика
- Колебания и волны
- 2.5.1. Резонанс
- 2.5.2. Реверберация
- 2.5.3. Акустомагнетоэлектрический эффект
- Волновое движение
- 2.6.4. Дисперсия волн
- 2.6.5Электрические и электромагнитные явления
- 2.7.1.Электрическое поле
- 2.7.1.1.Джоуля-Ленца закон
- 2.7.1.2. Закон Кулона
- 2.7.1.3. Электростатическая индукция
- 2.7.2.1. Контур с током в магнитном поле
- Сила Лоренца
- Магнитострикция
- Электромагнитное поле
- Эдс индукции
- Взаимная индукция
- Индукционный нагрев
- Диэлектрические свойства вещества
- Пьезоэлектрический эффект
- 2.8.2. Обратный пьезоэлектрический эффект
- Пироэлектрики
- Электреты
- Сегнетоэлектрики
- Магнитные свойства вещества
- Закон Кюри
- Виллари эффект
- Магниторезистивный эффект
- Баркгаузена эффект
- Эффект Эйнштейна – де-Хааза
- Электрические свойства вещества
- Тензорезистивный эффект
- Терморезистивный эффект
- Термоэлектрические и эмиссионные явления
- 2.11.1. Эффект Зеебека
- 2.11.2. Эффект Пельтье
- 2.11.3. Термоэлектронная эмиссия
- Гальвано- и термомагнитные явления
- Холла эффект
- 2.12.2. Эттинсгаузена эффект
- Электрические разряды в газах
- Электрокинетические явления
- Свет и вещество
- 2.15.1. Полное внутреннее отражение
- Фотоэлектрические и фотохимические явления
- 2.16.1. Фотоэффект
- 2.16.2. Дембера эффект
- Люминесценция
- Фотоупругость
- Электрооптический эффект Керра.
- Фарадея эффект
- Эффект Зеемана
- Дихроизм
- Явления микромира
- Электронный парамагнитный резонанс
- Акустический парамагнитный резонанс
- Ядерный магнитный резонанс
- . Фотофорез
- Стробоскопический эффект
- Электрореологический эффект
- Акустоэлектрический эффект
- Заключение
- Литература