2.4. Торможение и спуск ка или его части ( ca) в атмосфере планет.
КА входит в атмосферу с большой начальной скоростью. Аэродинамические силы сопротивления при снижении замедляют КА, и его скорость уменьшается до малого ( дозвукового) значения. В зависимости от тормозящих свойств атмосферы на процесс торможения влияют те или иные характеристики КА, основные из которых являются аэродинамическое качество и нагрузка на лобовую поверхность, т.е. масса КА, отнесенная к площади его миделя. При спуске в атмосфере Земли нагрузка на лобовую поверхность несущественна, т.к. даже КА с нулевым аэродинамическим качеством и с большой нагрузкой на лобовую поверхность тормозятся до малых дозвуковых скоростей. В разреженной атмосфере Марса со слабыми тормозящими свойствами только аппараты со сравнительно небольшими нагрузками на мидель в состоянии погасить начальную скорость до дозвуковых скоростей. Интенсивность торможения атмосферой ограничивается допустимыми перегрузками для экипажа, приборов или конструкции КА.
Характер траектории спуска в атмосфере в основном определяется аэродинамическими характеристиками КА, а также начальными условиями движения и параметрами атмосферы. Если КА не обладает подъемной силой , то он осуществляет баллистический спуск. Вид баллистической траектории целиком определяется начальными условиями входа в плотную атмосферу и прежде всего углом входа. Баллистический спуск связан с большими перегрузками. Такой спуск применялся при первых полета человека в космос. Если СА обладает даже малым аэродинамическим качеством ( ) , то для него характерно существенное уменьшение перегрузок по сравнению с баллистическим спуском. Аэродинамическое качество может быть использовано и при формировании характера распределения по времени внешней тепловой нагрузки на поверхность СА, что открывает принципиальную возможность осуществления минимизации массы тепловой защиты. Возможен и планирующий спуск, характерной особенностью которого является управление траекторией движения путем использования аэродинамической подъемной силы.
Независимо от того, какой способ спуска реализуется при входе СА в плотные слои атмосферы, перед ним образуется ударная волна, которая отходит от его поверхности, оставаясь в окрестности лобовой точки практически эквидистантной его поверхности. Набегающий на СА поток газа, проходя через фронт ударной волны замедляется и резко меняет свои параметры: давление, плотность, температуру, химический состав. Температура газа, его плотность возрастают в десятки раз по сравнению с температурой и плотностью невозмущенного гаового потока. А давление увеличивается с сотни раз [12] .
Рис.2.2 Изменение параметров газа за ударной волной
С физической точки зрения мгновенное скачкообразное изменение параметров при переходе через ударную волну следует рассматривать только как идеализированную схему быстропротекающего процесса непрерывного изменения состояния. Почти вся кинетическая энергия КА при торможении расходуется на нагрев воздуха за ударной волной и лишь небольшая часть ( не превышающая 1%) в виде тепловой энергии затрачивается на нагрев и унос теплозащиты. Плотность тепловых потоков, поступающих к поверхности КА, зависит от траектории спуска. При крутых траекториях подводятся потоки большой плотности. На пологих траекториях, характерных для планирующего спуска, плотности тепловых потоков меньше , хотя суммарная тепловая энергия, подводимая к поверхности КА возрастает вследствие увеличения времени спуска.
3. СТАТИЧЕСКИЕ И ВИБРАЦИОННЫЕ ИСПЫТАНИЯ
В процессе эксплуатации ( на стартовой позиции, на участке выведения, в условиях космического полета, при спуске в атмосфере Земли или при посадке на другие планеты ) КА подвергается воздействию внешних механических нагрузок. Если рассматривать воздействие внешних силовых нагрузок с точки зрения влияния их на напряженно-деформированное состояние частей конструкции КА и на значения соответствующих внутренних усилий, определяющих силовое воздействие частей конструкции между собой, то по характеру распределения все нагрузки могут быть разделены на поверхностные и объемные ( массовые) [ 1 ]. Поверхностные нагрузки распределяются на поверхности элементов конструкции и характеризуются давлением или значением равнодействующей силы. Массовые нагрузки распределяются по объему элементов конструкции и пропорциональны плотности их материала. Значения массовых нагрузок характеризуются коэффициентом перегрузки. Основным источником массовых (
инерционных) нагрузок для отдельных элементов и даже частей конструкции КА является вибрация (общие или местные ускорения колебательного характера).
Все внешние поверхностные нагрузки подразделяются на квазистатические, медленно изменяющиеся по времени и называемые статическими, и на динамические, вызывающие упругие колебания конструкции КА. Эффект динамического действия внешних поверхностных сил ( проявляющийся в возбуждении упругих колебаний) зависит в основном от динамических характеристик самого аппарата. Поэтому обычно в качестве критерия указанной классификации внешних нагрузок выбирают период (или частоту) свободных упругих колебаний конструкции в целом или ее частей и элементов. Если время изменения внешних поверхностных нагрузок велико по сравнению с периодом свободных упругих колебаний рассматриваемой конструкции , то эти нагрузки считаются статическими или квазистатическими. Если же время изменения внешних поверхностных нагрузок мало по сравнению с периодом свободных упругих колебаний – нагрузки относят к категории динамических. Таким образом, одна и та же внешняя нагрузка для одних конструкций может считаться квазистатической, а для других – динамической.
- 1.1. Цель и задачи экспериментальной отработки
- 1.2. Критерии эффективности экспериментальной отработки
- 1.3. Классификация испытаний ка и его составных частей.
- 2.1. Пребывание в земных условиях .
- 2.2. Участок выведения ка на траекторию полета
- 2.3. Пребывание в космосе
- 2.4. Торможение и спуск ка или его части ( ca) в атмосфере планет.
- 3.1. Статические испытания
- 3.2. Вибрационные испытания
- 4.1.Испытания на воздействие инерционных нагрузок.
- 4.2.Испытания на воздействие ударных нагрузок .
- 5.1. Задачи, решаемые при газодинамических испытаниях , и методический подход к их решению.
- 5.2. Средства экспериментального моделирования газодинамических процессов
- 6.1.Источники акустических нагрузок
- 6.2.Виды акустических испытаний и их краткая характеристика .
- 7.1.Общая характеристика тепловой отработки ка: этапы, структура и задачи отработки.
- 7.2. Проблемы тепловакуумной отработки ка
- 7.3. Методы экспериментального моделирования космического вакуума и радиационных свойств космического пространства.
- 7.4. Моделирование воздействия на ка электромагнитного излучения Солнца.
- 7.4.2.Источники излучения , используемые в имитаторах солнечного излучения
- 7.5. Моделирование теплового воздействия планет на поверхность ка
- 7.6. Вакуумно-температурные испытания ка.
- 7.7. Невакуумные испытания герметичных отсеков.
- 7.8. Методические вопросы воспроизведения расчетных тепловых нагрузок на испытуемый объект .
- 8.1. Задачи экспериментального исследования
- 8.2. Экспериментальные высокотемпературные установки для отработки теплозащитных покрытий
- 10.1 Источники ионизирующего излучения
- 10.2. Источники радиации, применяемые при экспериментальных исследованиях
- 10.3. Испытания на воздействие магнитных полей
- 10.4. Электрические испытания.
- 11.2. Испытания ла в целом
- 7.1.Общая характеристика тепловой отработки ка: этапы, структура
- 7.4. Моделирование воздействия на ка электромагнитного излучения