7. Нормы технологического проектирования нтп эпп-94. Электрические сети 110-330 кВ.
Настоящие нормы технологического проектирования (НТП) содержат основные указания по проектированию систем электроснабжения напряжением свыше и до 1 кВ вновь строящихся и реконструируемых промышленных предприятий и приравненных к ним потребителей. Следует рассматривать совместно с требованиями ПУЭ. Требованиями НТП следует руководствоваться при проектировании систем электроснабжения и подстанций промышленных предприятий всех министерств и ведомств, получающих электроэнергию от сетей энергосистем и от собственных электростанций. К системам электроснабжения подземных, тяговых и других специальных установок могут быть предъявлены дополнительные требования. НТП заменяют собой строительные нормы Госстроя СССР СН 174-75 "Инструкция по проектированию электроснабжения промышленных предприятий".
Количество и вид приемного пункта (пункт приема электрической энергии от сети энергосистемы) определяются в зависимости от значения и территориального расположения электрической нагрузки предприятия, требований надежности электроснабжения, очередности строительства предприятия, условий подключения к сети энергосистемы. При построении системы электроснабжения предприятия во всех случаях, где это возможно, следует применять схемы глубоких вводов 110-330 кВ как наиболее экономичной и надежной системы распределения электроэнергии.Для предприятий с электрической нагрузкой, составляющей десятки мегаватт, приемными пунктами могут быть главные понижающие подстанции (ГПП), подстанции глубокого ввода (ПГВ). ГПП осуществляет прием электроэнергии из энергосистемы на напряжениях 110-330 кВ, ее трансформацию и распределение на напряжениях 6-35 кВ. На ГПП устанавливаются, как правило, понижающие трансформаторы мощностью от 10 до 80 МВА. По требованию энергоснабжающей организации на ГПП может осуществляться и распределение электроэнергии на первичном напряжении 110-330 кВ. ГПП обычно размещается на границе предприятия со стороны подвода воздушных питающих линий, если этому не препятствуют условия загрязнения изоляции.
ПГВ осуществляет прием электроэнергии из энергосистемы на напряжениях 110-220 кВ и является разновидностью ГПП, отличается от нее расположением (в непосредственной близости от энергоемкого цеха, корпуса) и простейшей схемой на стороне 110-220 кВ (блок "линия-трансформатор"). При проектировании электроснабжения энергоемких производств должна быть во всех случаях рассмотрена возможность выполнения разукрупненных глубоких вводов 110-220 кВ. При питании промышленных предприятий от сетей энергосистемы напряжением 110 кВ следует рассматривать целесообразность применения в качестве приемных пунктов комплектных подстанций 110 кВ заводского изготовления блочной конструкции серии КТПБ. ГПП, ПГВ рекомендуется выполнять двухтрансформаторными. В следующих случаях может быть рассмотрена целесообразность установки трех трансформаторов:
- при наличии крупных сосредоточенных электрических нагрузок;
- при необходимости выделения питания крупных резкопеременных нагрузок на отдельные трансформаторы;
- для цехов и предприятий со значительным количеством электроприемников особой группы I категории и электроприемников I категории, к питанию которых предъявляются повышенные требования в отношении надежности.
В обоснованных случаях на ГПП могут быть установлены автотрансформаторы.
Приёмные пункты электроэнергии промышленных предприятий, имеющих в своем составе мощные электроприемники с резкопеременными графиками нагрузки, рекомендуется подключать к сетям энергосистем 110-330 кВ с возможно большими токами КЗ. При выделении этих электроприемников на отдельные трансформаторы последние следует подключать к сети общего назначения 110-330 кВ с наибольшими значениями токов КЗ.Предохранители на стороне высшего напряжения подстанций 110 кВ с двухобмоточными трансформаторами могут применяться при условии обеспечения селективности предохранителей и релейной защиты линий высшего и низшего напряжений. Установка предохранителей не допускается для трансформаторов напряжением 110 кВ, нейтраль которых в процессе эксплуатации может быть разземлена.
Закрытые распределительные устройства напряжением 110-220 кВ могут быть применены в следующих случаях:
- в районах с загрязненной атмосферой;
- в районах с минимальными расчетными температурами окружающего воздуха ниже допустимых для электрооборудования;
- размещение открытогораспредустройства невозможно по условиям застройки площадки.
Решение о сооружении закрытого РУ 110-220 кВ должно быть обосновано в проекте.
Проектирование генерального плана подстанции 110-330 кВ, дорог на территории подстанции, объектов масляного, пневматического хозяйства следует производить согласно требованиям гл. 4.2 ПУЭ "Распределительные устройства и подстанции напряжением выше 1 кВ" и норм технологического проектирования подстанций 35-750 кВ. На подстанциях напряжением до 330 кВ не следует предусматривать стационарные грузоподъемные устройства для ревизии трансформаторов. Для этой цели может использоваться портал ошиновки трансформатора или инвентарное грузоподъемное устройство (передвижной кран).
- 1. Общая характеристика систем электроснабжения.
- 2. Этапы формирования Единой энергетической системы страны
- 3 Основные причины и результаты реформирования электроэнергетики России
- 4. Вопросы, решаемые в процессе проектирования систем электроснабжения. Основные требования при проектировании и эксплуатации электрических станций, подстанций, сетей и энергосистем.
- 5. Нормы технологического проектирования нтп эпп-94. Область применения и общие требования к проектированию.
- 6. Нормы технологического проектирования нтп эпп-94. Основные источники питания промышленных предприятий.
- 7. Нормы технологического проектирования нтп эпп-94. Электрические сети 110-330 кВ.
- 8. Электрические сети 6-10 кВ. Режимы работы, тенико-экономичкский характеристики и области применения
- 9. Выбор типа, числа и мощности силовых трансформаторов Основные положения
- 10. Выбор мощности силовых трансформаторов при несимметричной нагрузке. Схемы соединения обмоток.
- 11. Проверка силовых трансформаторов на перегрузочную способность. Аварийная и систематическая перегрузки.
- 12. Определение потерь мощности и электроэнергии в автотрансформаторах.
- 13Определение потерь мощности и электроэнергии в силовых трансформаторах
- 14. Определение экономически целесообразного режима работы трансформаторов
- 15. Выбор числа трансформаторных подстанций на предприятии. Применение напряжения 20 кВ.
- 16. Генплан предприятия. Особенности выбора места гпп и рп на генплане предприятия.
- 17. Учет особенности генплана предприятия при проектировании систем эпп
- 18. Особенности проектирования гпп и рп в схемах эпп
- 19. Общие принципы построения схем внутрицехового и внутризаводского электроснабжения.
- 20. Характерные схемы электрических сетей внешнего электроснабжения
- 21 Характерные схемы электрических сетей внутреннего электроснабжения
- 22. Типовые схемы электроснабжения предприятий различных отраслей промышленности.
- 23. Распределение электрической энергии до 1000 в. Порядок проектирования.
- 24. Схемы присоединения высоковольтных электроприёмников.
- 25. Картограммы нагрузок. Назначение, особенности построения.
- 26. Определение уцэн и определение зоны рассеяния уцэн.
- 27. Основной состав оборудования, используемого в сетях выше 1000 в. Назначение и современные типы.
- 28 Нагрузочная способность и выбор параметров основного электрооборудования
- 29 Основное содержание рд 153-34.0-20.527-98.
- 30. Назначение и особенности применения сдвоенных реакторов в системе эпп.
- 31. Коммерческий и технический учет электрической энергии. Электробаланс предприятия. Аскуэ.
- Автоматизированная система коммерческого учета электроэнергии предназначена для:
- 32 Методика измерения сопротивления изоляции электроустановок, аппаратов, вторичных цепей, электропроводок напряжением до 1000 в
- 33 Методика испытания средств защиты
- 34 Основные принципы автоматизации и диспетчеризации электроснабжения.
- 35. Режимы напряжений в сетях промышленных предприятий. Выбор рационального напряжения электроснабжения
- 36. Нормальные требования к качеству напряжения. Методы и средства кондиционирования.
- 37. Самозапуск трехфазных электродвигателей. Основные положения.
- 38. Последовательность расчета самозапуска.Выбег и разгон эд при самозапуске
- 39. Особенности пуска и самозапуска синхронных двигателей. Ресинхронизация сд.
- 40. Токи включения и уровни напряжений при самозапуске
- 41. Режимы реактивной мощности в системах эпп. Основные определения и положения
- 42. Мероприятия по уменьшению реактивных нагрузок.
- 43. Общая методика выбора устройств компенсации реактивных нагрузок.
- 44. Устройства компенсации реактивной мощности. Краткое описание и сравнительная характеристика
- 45. Синхронные двигатели (компенсаторы) и конденсаторные установки. Область и особенности применения.
- 46. Установки компенсации реактивной мощности. Порядок проектирования.
- 47. Резонансные явления в электроустановках зданий.
- 48. Новые методы и технические средства использования возобновляемых источников энергии в производственных процессах
- 49. Энергосбережение при передаче и распределении электроэнергии. Основные мероприятия.
- 50 Основные задачи развития электроэнергетических систем
- 52 Общие принципы оптимизации систем электроснабжения с учетом надежности. Критерии оптимальности.
- 53 Информационное обеспечение задач оптимизации сэс
- 54. Физическое и математическое моделирование. Свойства моделей.
- 57 Типы систем, их основные свойства и особенности
- 58 Свойства и особенности развития производственных (энергетических систем)
- 59 Оптимизация и эффективность производственных систем
- 60. Основные понятия теории планирования экспериментов