10. Выбор мощности силовых трансформаторов при несимметричной нагрузке. Схемы соединения обмоток.
В системе электроснабжения промышленных предприятий часто встречается несимметричная нагрузка трансформаторов. При работе трансформатора в таком режиме, если его мощность выбрана по максимально нагруженной фазе, будет иметь место соответствующее недоиспользование его. Совершенно очевидно, что трансформатор следует выбирать с учетом возможной перегрузки, чтобы более полноценно использовать его нагрузочную способность и сократить потребную трансформаторную мощность. Исследования этого вопроса, показали, что в таком режиме можно выбирать мощность трансформатора с учетом перегрузки, вследствие чего ток в наиболее загруженной фазе может быть допущен выше номинального. Коэффициент перегрузки, допустимой в несимметричном режиме, Кп.н.р. определяется из выражения:
где IА — ток наиболее нагруженной фазы; /ном — номинальный ток трансформатора; 1В и Iс — ток в двух других фазах, нагруженных меньше фазы А.
Существуют три основных способа соединения фазовых обмоток каждой стороны трёхфазного трансформатора:
-
Y-соединение, так называемой соединение звездой, где все три обмотки соединены вместе одним концом каждой из обмоток в одной точке, называемой нейтральной точкой или звездой
-
Δ-соединение треугольником, где три фазных обмотки соединены последовательно и образуют кольцо (или треугольник)
-
Z-соединение, так называемое соединение зигзагом
Первичная и вторичная стороны трансформатора могут быть соединены любым из трёх способов, показанным выше. Данные способы предлагают несколько различных комбинаций соединений в трансформаторах с различными характеристиками.
Y-соединение обычно является естественным выбором для самых высоких напряжений, когда нейтральная точка предназначена для заземления. Соединённая звездой обмотка также имеет то преимущество, что переключение регулирования коэффициента трансформации может быть предусмотрено на нейтральном конце, где также может быть размещён переключатель числа витков.Соединение звездой используется на одной стороне трансформатора, другая сторона должна быть соединена треугольником, особенно в случаях, если нейтраль соединения звездой планируется для зарядки.
В соединенной треугольником обмотке ток, протекающий по каждой фазовой обмотке равен фазному току, разделённому на , в то время как в соединении звездой, линейный ток каждой фазной обмотки идентичен линейному току сети. Соединение обмотки треугольником выгодно использовать в высоковольтных трансформаторах..
Соединение обмотки треугольником позволяет циркулировать третьей (и кратным ей) гармонике тока внутри треугольника, образованного тремя последовательно соединёнными фазными обмотками.
- 1. Общая характеристика систем электроснабжения.
- 2. Этапы формирования Единой энергетической системы страны
- 3 Основные причины и результаты реформирования электроэнергетики России
- 4. Вопросы, решаемые в процессе проектирования систем электроснабжения. Основные требования при проектировании и эксплуатации электрических станций, подстанций, сетей и энергосистем.
- 5. Нормы технологического проектирования нтп эпп-94. Область применения и общие требования к проектированию.
- 6. Нормы технологического проектирования нтп эпп-94. Основные источники питания промышленных предприятий.
- 7. Нормы технологического проектирования нтп эпп-94. Электрические сети 110-330 кВ.
- 8. Электрические сети 6-10 кВ. Режимы работы, тенико-экономичкский характеристики и области применения
- 9. Выбор типа, числа и мощности силовых трансформаторов Основные положения
- 10. Выбор мощности силовых трансформаторов при несимметричной нагрузке. Схемы соединения обмоток.
- 11. Проверка силовых трансформаторов на перегрузочную способность. Аварийная и систематическая перегрузки.
- 12. Определение потерь мощности и электроэнергии в автотрансформаторах.
- 13Определение потерь мощности и электроэнергии в силовых трансформаторах
- 14. Определение экономически целесообразного режима работы трансформаторов
- 15. Выбор числа трансформаторных подстанций на предприятии. Применение напряжения 20 кВ.
- 16. Генплан предприятия. Особенности выбора места гпп и рп на генплане предприятия.
- 17. Учет особенности генплана предприятия при проектировании систем эпп
- 18. Особенности проектирования гпп и рп в схемах эпп
- 19. Общие принципы построения схем внутрицехового и внутризаводского электроснабжения.
- 20. Характерные схемы электрических сетей внешнего электроснабжения
- 21 Характерные схемы электрических сетей внутреннего электроснабжения
- 22. Типовые схемы электроснабжения предприятий различных отраслей промышленности.
- 23. Распределение электрической энергии до 1000 в. Порядок проектирования.
- 24. Схемы присоединения высоковольтных электроприёмников.
- 25. Картограммы нагрузок. Назначение, особенности построения.
- 26. Определение уцэн и определение зоны рассеяния уцэн.
- 27. Основной состав оборудования, используемого в сетях выше 1000 в. Назначение и современные типы.
- 28 Нагрузочная способность и выбор параметров основного электрооборудования
- 29 Основное содержание рд 153-34.0-20.527-98.
- 30. Назначение и особенности применения сдвоенных реакторов в системе эпп.
- 31. Коммерческий и технический учет электрической энергии. Электробаланс предприятия. Аскуэ.
- Автоматизированная система коммерческого учета электроэнергии предназначена для:
- 32 Методика измерения сопротивления изоляции электроустановок, аппаратов, вторичных цепей, электропроводок напряжением до 1000 в
- 33 Методика испытания средств защиты
- 34 Основные принципы автоматизации и диспетчеризации электроснабжения.
- 35. Режимы напряжений в сетях промышленных предприятий. Выбор рационального напряжения электроснабжения
- 36. Нормальные требования к качеству напряжения. Методы и средства кондиционирования.
- 37. Самозапуск трехфазных электродвигателей. Основные положения.
- 38. Последовательность расчета самозапуска.Выбег и разгон эд при самозапуске
- 39. Особенности пуска и самозапуска синхронных двигателей. Ресинхронизация сд.
- 40. Токи включения и уровни напряжений при самозапуске
- 41. Режимы реактивной мощности в системах эпп. Основные определения и положения
- 42. Мероприятия по уменьшению реактивных нагрузок.
- 43. Общая методика выбора устройств компенсации реактивных нагрузок.
- 44. Устройства компенсации реактивной мощности. Краткое описание и сравнительная характеристика
- 45. Синхронные двигатели (компенсаторы) и конденсаторные установки. Область и особенности применения.
- 46. Установки компенсации реактивной мощности. Порядок проектирования.
- 47. Резонансные явления в электроустановках зданий.
- 48. Новые методы и технические средства использования возобновляемых источников энергии в производственных процессах
- 49. Энергосбережение при передаче и распределении электроэнергии. Основные мероприятия.
- 50 Основные задачи развития электроэнергетических систем
- 52 Общие принципы оптимизации систем электроснабжения с учетом надежности. Критерии оптимальности.
- 53 Информационное обеспечение задач оптимизации сэс
- 54. Физическое и математическое моделирование. Свойства моделей.
- 57 Типы систем, их основные свойства и особенности
- 58 Свойства и особенности развития производственных (энергетических систем)
- 59 Оптимизация и эффективность производственных систем
- 60. Основные понятия теории планирования экспериментов