7.1.Общая характеристика тепловой отработки ка: этапы, структура и задачи отработки.
Надежное математическое моделирование теплообмена большинства типов КА связано с рядом трудностей, обусловленных не столько недостатками математических методов и вычислительных средств, сколько сложностью и значительной неопределенностью протекания физических процессов внешнего и внутреннего теплообмена между элементами КА. Поэтому при создании КА большое значение имеет, так называемая , тепловая отработка , представляющая собой совокупность тепловых экспериментов (испытаний) и проводимых на основе их результатов мероприятий по доработке ( в случае необходимости) средств обеспечения теплового режима , а иногда и конструкции аппарата.
Тепловая отработка может проводиться на различных стадиях создания КА: начиная с этапа научно-исследовательских и опытно-конструкторских работ до летно-конструкторских испытаний. Для начальной стадии разработки КА характерны эксперименты, связанные с поиском и отработкой новых методов, схемных и конструктивных решений задач обеспечения теплового режима КА в целом или его отдельных частей, а также эксперименты, проводимые для подтверждения возможности получения требуемых технических характеристик систем КА. На последующих стадиях разработки КА можно выделить следующие три этапа тепловых испытаний :
- Автономные испытания агрегатов КА для полной их автономной отработки. В качестве агрегатов могут рассматриваться как отдельные приборы, аппаратура, устройства, так и целые отсеки и системы.
- Комплексные испытания систем КА, включающие ряд образующих взаимосвязанную совокупность агрегатов, работоспособность каждого из которых и условия работы взаимозависимы.
- Комплексные испытания КА в целом.
Отмеченные этапы отражают один из принципов отработки техники: от “ простого к сложному “. Этот принцип требует постепенного укрупнения и усложнения отрабатываемых частей КА.
В зависимости от особенностей отрабатываемого аппарата, наличия его прототипов и опыта отдельные этапы отработки могут исключаться или, наоборот, разбиваться на более мелкие этапы. Условием достаточности проведенного объема отработки КА является наличие сведений о реализующихся в неблагоприятных, но возможных условиях его работы, приемлемых параметрах теплового режима, а также о надежности их обеспечения.
По структуре тепловые испытания КА можно разделить на следующие типы :
- Тепловакуумные испытания - испытания, связанные с моделированием космических условий полета или условий пребывания на поверхности не имеющих атмосферу небесных тел ( Луны, астероидах) .
- Невакуумные испытания герметичных отсеков.
- Испытания систем тепловой защиты, обеспечивающих сохранность конструкции, внутренний тепловой режим спускаемых с орбит аппаратов в условиях кинетического и радиационного нагрева, обусловленного аэродинамическим торможением.
- Тепловые испытания с воспроизведением условий пребывания в атмосфере планет, в том числе на Земле ( климатические тепловые испытания) .
- Вакуумно-температурные испытания, в процессе которых проверяется работоспособность каких-то узлов и механизмов КА в условиях реализации на элементах конструкции испытуемого объекта экспериментально или расчетно выявленных значений температур.
- Ресурсные испытания и испытания на надежность элементов системы терморегулирования, оборудования и комплектующих элементов в условиях, имитирующих реальные тепловые условия эксплуатации .
- Исследование работоспособности СОТР в условиях аварийной ситуации, т.е. при частичном или полном отказе отдельных элементов системы, нарушении герметичности, отклонении внутренних тепловыделений от значений , предусмотренных программой полета и т. д. ;
- Определение теплофизических параметров отдельных частей и элементов КА;
- исследование температурного поля в КА или его отдельных частях с целью коррекции математической модели его теплового состояния;
- Проверка работы радиоэлектронной, оптической и другой аппаратуры в условиях реальных температур и температурных градиентов.
- 1.1. Цель и задачи экспериментальной отработки
- 1.2. Критерии эффективности экспериментальной отработки
- 1.3. Классификация испытаний ка и его составных частей.
- 2.1. Пребывание в земных условиях .
- 2.2. Участок выведения ка на траекторию полета
- 2.3. Пребывание в космосе
- 2.4. Торможение и спуск ка или его части ( ca) в атмосфере планет.
- 3.1. Статические испытания
- 3.2. Вибрационные испытания
- 4.1.Испытания на воздействие инерционных нагрузок.
- 4.2.Испытания на воздействие ударных нагрузок .
- 5.1. Задачи, решаемые при газодинамических испытаниях , и методический подход к их решению.
- 5.2. Средства экспериментального моделирования газодинамических процессов
- 6.1.Источники акустических нагрузок
- 6.2.Виды акустических испытаний и их краткая характеристика .
- 7.1.Общая характеристика тепловой отработки ка: этапы, структура и задачи отработки.
- 7.2. Проблемы тепловакуумной отработки ка
- 7.3. Методы экспериментального моделирования космического вакуума и радиационных свойств космического пространства.
- 7.4. Моделирование воздействия на ка электромагнитного излучения Солнца.
- 7.4.2.Источники излучения , используемые в имитаторах солнечного излучения
- 7.5. Моделирование теплового воздействия планет на поверхность ка
- 7.6. Вакуумно-температурные испытания ка.
- 7.7. Невакуумные испытания герметичных отсеков.
- 7.8. Методические вопросы воспроизведения расчетных тепловых нагрузок на испытуемый объект .
- 8.1. Задачи экспериментального исследования
- 8.2. Экспериментальные высокотемпературные установки для отработки теплозащитных покрытий
- 10.1 Источники ионизирующего излучения
- 10.2. Источники радиации, применяемые при экспериментальных исследованиях
- 10.3. Испытания на воздействие магнитных полей
- 10.4. Электрические испытания.
- 11.2. Испытания ла в целом
- 7.1.Общая характеристика тепловой отработки ка: этапы, структура
- 7.4. Моделирование воздействия на ка электромагнитного излучения