logo
Учебник для углубленного изучения физики

Поверхность жидкости стремится к сокращению

Многочисленные наблюдения и опыты показывают, что жидкость принимает такую форму, при которой ее свободная поверхность имеет наименьшую площадь. В своем стремлении сократиться поверхностная пленка придавала бы жидкости сферическую форму, если бы не притяжение к Земле. Чем меньше капелька, тем большую роль играют поверхностные силы по сравнению с объемными (силами тяготения). Поэтому маленькие капельки росы близки по форме к шару. При свободном падении возникает состояние невесомости, и поэтому дождевые капли почти строго шарообразны*. Из-за преломления солнечных лучей в этих каплях возникает радуга. Не будь капли сферическими, не было бы и радуги.

* Небольшое отступление от сферичности капель вызвано сопротивлением воздуха.

В космическом корабле, находящемся в состоянии невесомости, шарообразную форму принимают не только отдельные капли, но и жидкости большой массы.

Жидкость может приобрести шарообразную форму и в земных условиях, если скомпенсировать каким-либо способом силу тяжести.

Интересный опыт был выполнен бельгийским физиком Ж. Плато. Для проведения этого опыта большую каплю анилина надо ввести в раствор поваренной соли, плотность которого равна плотности анилина. Капля будет находиться в равновесии, так как сила тяжести, действующая на каплю, уравновешивается архимедовой силой. В этом случае капля принимает форму шара (рис. 7.4).

Рис. 7.4

Рассмотрим еще несколько опытов, подтверждающих стремление жидкости уменьшить поверхность соприкосновения с воздухом или паром этой жидкости. Такие же явления наблюдаются на границе двух несмешивающихся жидкостей.

1. На слегка вогнутое часовое стекло нальем очень слабый водный раствор серной кислоты. Затем при помощи пипетки выпустим в раствор струей множество капелек ртути (рис. 7.5, а). Вскоре эти маленькие капли ртути сольются в одну большую каплю (рис. 7.5, б), площадь поверхности которой меньше суммарной площади поверхностей множества мелких капель.

Рис. 7.5

2. К двум точкам проволочного каркаса привяжем нить, длина которой больше диаметра каркаса. Погрузив каркас в раствор мыла, получим мыльную пленку, на которой нить будет лежать в произвольном положении (рис. 7.6, а). Если проколоть пленку с одной стороны нити, то пленка, оставшаяся по другую сторону нити, сокращаясь, натянет нить так, как показано на рисунке 7.6, б.

Рис. 7.6

3. Предыдущий опыт можно видоизменить, положив на пленку, образованную в проволочном каркасе, петлю (рис. 7.7, а). Если прорвать пленку внутри петли, то она примет форму окружности (рис. 7.7, б).

Рис. 7.7

4. Если пленки образуются на проволочных каркасах, имеющих различные геометрические формы (куб, тетраэдр и др.), то для каждого каркаса пленка всегда устанавливается совершенно определенным образом, при котором ее поверхность имеет наименьшую площадь (рис. 7.8, а, б).

Рис. 7.8

Поверхность жидкости обладает загадочным на первый взгляд свойством. Она стремится сократиться так, чтобы площадь ее поверхности стала минимальной.