Движение заряженной частицы в магнитном поле.
Формула силы Лоренца дает возможность найти ряд закономерностей движения заряженных частиц в магнитном поле. Зная направление силы Лоренца и направление вызываемого ею отклонения заряженной частицы в магнитном поле можно найти знак заряда частиц, которые движутся в магнитных полях. Для вывода общих закономерностей будем полагать, что магнитное поле однородно и на частицы не действуют электрические поля. Если заряженная частица в магнитном поле движется со скоростью v вдоль линий магнитной индукции, то угол α между векторами v и В равен 0 или π. Тогда сила Лоренца равна нулю, т. е. магнитное поле на частицу не действует и она движется равномерно и прямолинейно. В случае, если заряженная частица движется в магнитном поле со скоростью v, которая перпендикулярна вектору В, то сила Лоренца F=Q[vB] постоянна по модулю и перпендикулярна к траектории частицы. По второму закону Ньютона, сила Лоренца создает центростремительное ускорение. Значит, что частица будет двигаться по окружности, радиус r которой находится из условия QvB=mv2/r , следовательно Период вращения частицы, т. е. время Т, за которое она совершает один полный оборот, т. е. период вращения частицы в однородном магнитном поле задается только величиной, которая обратна удельному заряду (Q/m) частицы, и магнитной индукцией поля, но при этом не зависит от ее скорости (при v<<c). На этом соображении основано действие циклических ускорителей заряженных частиц. В случае, если скорость v заряженной частицы направлена под углом α к вектору В то ее движение можно задать в виде суперпозиции: 1) прямолинейного равномерного движения вдоль поля со скоростью vparall=vcosα ; 2) равномерного движения со скоростью vperpend=vsinα по окружности в плоскости, которая перпендикулярна полю. Радиус окружности задается формулой (1) (в этом случае надо вместо v подставить vperpend=vsinα). В результате сложения двух данных движений возникает движение по спирали, ось которой параллельна магнитному полю (рис. 1). Шаг винтовой (спиральной) линии Подставив в данное выражение (2), найдем Направление, в котором закручивается спираль, определяется знаком заряда частицы. Если скорость v заряженной частицы составляет угол α с направлением вектора В неоднородного магнитного поля, у которого индукция возрастает в направлении движения частицы, то r и h уменьшаются с увеличением В. На этом основана фокусировка заряженных частиц в магнитном поле.
- Ответы по физике
- Электризация тел. Электрический заряд. Закон сохранения электрического заряда.
- Закон Кулона. Диэлектрическая проницаемость среды. Плотность заряда.
- Напряженность электростатического поля. Линии напряженности (силовые линии) электростатического поля. Принцип суперпозиции электростатических полей.
- Работа электростатического поля по перемещению заряда.
- Потенциальная энергия заряда. Потенциал электростатического поля.
- Разность потенциалов. Связь между напряженностью и потенциалом. Эквипотенциальные поверхности.
- Связь между напряженностью и потенциалом
- Электроемкость. Конденсаторы.
- Соединения конденсаторов. Применение конденсаторов.
- Энергия системы зарядов. Энергия заряженного уединенного проводника. Энергия заряженного конденсатора.
- Энергия заряженного уединенного проводника.
- Энергия заряженного конденсатора.
- Постоянный электрический ток. Сила тока. Плотность тока.
- Сторонние силы. Электродвижущая сила. Напряжение.
- Закон Ома. Электрическое сопротивление.
- Температурная зависимость сопротивления.
- Соединения проводников.
- Работа и мощность тока. Закон Джоуля-Ленца.
- Закон джоуля -ленца
- Закон Ома для неоднородного участка цепи.
- Магнитное поле. Магнитная индукция.
- Постоянные магниты. Магнитное поле Земли. Магнитная постоянная. Магнитная проницаемость среды.
- Действие магнитного поля на проводник с током. Закон Ампера.
- Действие магнитного поля на движущийся заряд. Сила Лоренца. Действие магнитного поля на движущийся заряд
- Движение заряженной частицы в магнитном поле.
- Магнитный поток. Магнитные свойства вещества.
- Магнитные свойства вещества
- Электромагнитная индукция. Закон электромагнитной индукции. Правило Ленца.
- Самоиндукция. Индуктивность. Электродвижущая сила самоиндукции.
- Энергия магнитного поля.
- Свободные электромагнитные колебания в контуре.
- Превращение энергии в колебательном контуре.
- Собственная частота колебаний в контуре.
- Затухание электрических колебаний.
- Вынужденные электрические колебания.
- Переменный ток и его получение. Действующие значения силы тока и напряжения.
- Активное, емкостное и индуктивное сопротивления.
- Преобразование переменного тока. Трансформатор.
- Передача и распределение электроэнергии.
- Открытый колебательный контур как источник электромагнитных волн. Электрический резонанс.
- Физический смысл показателя преломления. Полное отражение света.
- Интерференция света, ее проявление в природе и применение в технике.
- Дифракция света. Дифракционная решетка. Дифракционный спектр.
- Понятие о поляризации.
- Поляроиды, их применение в науке и технике.
- Дисперсия света. Разложение белого цвета призмой. Цвета тел.
- Виды спектров. Спектральный анализ.
- Эффект Доплера – Физо.
- Электромагнитное излучение в различных диапазонах длин волн: радиоволны, инфракрасное, видимое, ультрафиолетовое и рентгеновское излучение.
- Тепловое излучение. Черное тело.
- Распределение энергии в спектре излучения.
- Квантовая гипотеза Планка. Квантовая природа света.
- Энергия и импульс фотонов.
- Внешний фотоэлектрический эффект. Опыты а.Г. Столетова. Законы внешнего фотоэффекта.
- Внутренний фотоэффект. Применение фотоэффекта в технике.
- Модели атома Резерфорда и Бора.
- Уровни энергии в атоме. Излучение и поглощение энергии атома.
- Принцип действия и области применения квантовых генераторов.
- Экспериментальные методы регистрации элементарных частиц.
- Естественная радиоактивность и ее виды.
- Закон радиоактивного распада. Биологическое действие радиоактивных излучений.
- Состав атомных ядер. Ядерные силы.
- Дефект массы. Энергия связи атомных ядер.
- Общие сведения об элементарных частицах. Античастицы.
- Деление тяжелых ядер, цепная реакция деления.
- Управляемая цепная реакция. Ядерные реакторы.
- Получение радиоактивных изотопов и их применение в медицине, промышленности, сельском хозяйстве.
- Перспективы развития энергетики в стране.
- Термоядерный синтез и условия его осуществления.
- Строение звезд.
- Ядра звезд как естественный термоядерный реактор.
- Основные этапы эволюции звезд.
- Диалектическое развитие материального мира.
- Современная научная картина мира.