Электромагнитное излучение в различных диапазонах длин волн: радиоволны, инфракрасное, видимое, ультрафиолетовое и рентгеновское излучение.
Радиоизлучение (радиоволны, радиочастоты) — электромагнитное излучение с длинами волн 5•10−5—1010 метров и частотами, соответственно, от 6•1012 Гц и до нескольких Гц. Радиоволны используются при передаче данных в радиосетях.
Инфракрасное излучение — электромагнитное излучение, занимающее спектральную область между красным концом видимого света (с длиной волны[1] λ = 0,74 мкм) и микроволновым излучением (λ ~ 1—2 мм).
Оптические свойства веществ в инфракрасном излучении значительно отличаются от их свойств в видимом излучении. Инфракрасное излучение составляет большую часть излучения ламп накаливания, газоразрядных ламп, около 50% излучения Солнца; инфракрасное излучение испускают некоторые лазеры. Для его регистрации пользуются тепловыми и фотоэлектрическими приемниками, а также специальными фотоматериалами.
Видимое излучение — электромагнитные волны, воспринимаемые человеческим глазом, которые занимают участок спектра с длиной волны приблизительно от 380 (фиолетовый) до 740 нм (красный). Такие волны занимают частотный диапазон от 400 до 790 терагерц. Электромагнитное излучение с такими длинами волн также называется видимым светом, или просто светом. Наибольшую чувствительность к свету человеческий глаз имеет в области 555 нм (540 ТГц), в зелёной части спектра. В спектре содержатся не все цвета, которые различает человеческий мозг.
Ультрафиолетовое излучение (ультрафиолет, УФ, UV) — электромагнитное излучение, занимающее диапазон между фиолетовой границей видимого излучения и рентгеновским излучением (380 — 10 нм, 7,9•1014 — 3•1016 Герц).
Рентгеновское излучение — электромагнитные волны, энергия фотонов которых лежит на шкале электромагнитных волн между ультрафиолетовым излучением и гамма-излучением, что соответствует длинам волн от 10−2 до 103 Å (от 10−12 до 10−7 м).[1]
- Ответы по физике
- Электризация тел. Электрический заряд. Закон сохранения электрического заряда.
- Закон Кулона. Диэлектрическая проницаемость среды. Плотность заряда.
- Напряженность электростатического поля. Линии напряженности (силовые линии) электростатического поля. Принцип суперпозиции электростатических полей.
- Работа электростатического поля по перемещению заряда.
- Потенциальная энергия заряда. Потенциал электростатического поля.
- Разность потенциалов. Связь между напряженностью и потенциалом. Эквипотенциальные поверхности.
- Связь между напряженностью и потенциалом
- Электроемкость. Конденсаторы.
- Соединения конденсаторов. Применение конденсаторов.
- Энергия системы зарядов. Энергия заряженного уединенного проводника. Энергия заряженного конденсатора.
- Энергия заряженного уединенного проводника.
- Энергия заряженного конденсатора.
- Постоянный электрический ток. Сила тока. Плотность тока.
- Сторонние силы. Электродвижущая сила. Напряжение.
- Закон Ома. Электрическое сопротивление.
- Температурная зависимость сопротивления.
- Соединения проводников.
- Работа и мощность тока. Закон Джоуля-Ленца.
- Закон джоуля -ленца
- Закон Ома для неоднородного участка цепи.
- Магнитное поле. Магнитная индукция.
- Постоянные магниты. Магнитное поле Земли. Магнитная постоянная. Магнитная проницаемость среды.
- Действие магнитного поля на проводник с током. Закон Ампера.
- Действие магнитного поля на движущийся заряд. Сила Лоренца. Действие магнитного поля на движущийся заряд
- Движение заряженной частицы в магнитном поле.
- Магнитный поток. Магнитные свойства вещества.
- Магнитные свойства вещества
- Электромагнитная индукция. Закон электромагнитной индукции. Правило Ленца.
- Самоиндукция. Индуктивность. Электродвижущая сила самоиндукции.
- Энергия магнитного поля.
- Свободные электромагнитные колебания в контуре.
- Превращение энергии в колебательном контуре.
- Собственная частота колебаний в контуре.
- Затухание электрических колебаний.
- Вынужденные электрические колебания.
- Переменный ток и его получение. Действующие значения силы тока и напряжения.
- Активное, емкостное и индуктивное сопротивления.
- Преобразование переменного тока. Трансформатор.
- Передача и распределение электроэнергии.
- Открытый колебательный контур как источник электромагнитных волн. Электрический резонанс.
- Физический смысл показателя преломления. Полное отражение света.
- Интерференция света, ее проявление в природе и применение в технике.
- Дифракция света. Дифракционная решетка. Дифракционный спектр.
- Понятие о поляризации.
- Поляроиды, их применение в науке и технике.
- Дисперсия света. Разложение белого цвета призмой. Цвета тел.
- Виды спектров. Спектральный анализ.
- Эффект Доплера – Физо.
- Электромагнитное излучение в различных диапазонах длин волн: радиоволны, инфракрасное, видимое, ультрафиолетовое и рентгеновское излучение.
- Тепловое излучение. Черное тело.
- Распределение энергии в спектре излучения.
- Квантовая гипотеза Планка. Квантовая природа света.
- Энергия и импульс фотонов.
- Внешний фотоэлектрический эффект. Опыты а.Г. Столетова. Законы внешнего фотоэффекта.
- Внутренний фотоэффект. Применение фотоэффекта в технике.
- Модели атома Резерфорда и Бора.
- Уровни энергии в атоме. Излучение и поглощение энергии атома.
- Принцип действия и области применения квантовых генераторов.
- Экспериментальные методы регистрации элементарных частиц.
- Естественная радиоактивность и ее виды.
- Закон радиоактивного распада. Биологическое действие радиоактивных излучений.
- Состав атомных ядер. Ядерные силы.
- Дефект массы. Энергия связи атомных ядер.
- Общие сведения об элементарных частицах. Античастицы.
- Деление тяжелых ядер, цепная реакция деления.
- Управляемая цепная реакция. Ядерные реакторы.
- Получение радиоактивных изотопов и их применение в медицине, промышленности, сельском хозяйстве.
- Перспективы развития энергетики в стране.
- Термоядерный синтез и условия его осуществления.
- Строение звезд.
- Ядра звезд как естественный термоядерный реактор.
- Основные этапы эволюции звезд.
- Диалектическое развитие материального мира.
- Современная научная картина мира.