Превращения энергии при свободных механических колебаниях
При свободных механических колебаниях кинетическая и потенциальная энергии периодически изменяются. При максимальном отклонении тела от положения равновесия его скорость, а следовательно, и кинетическая энергия обращаются в нуль. В этом положении потенциальная энергия колеблющегося тела достигает максимального значения. Для груза на пружине потенциальная энергия – это энергия упругих деформаций пружины. Для математического маятника – это энергия в поле тяготения Земли.
Когда тело при своем движении проходит через положение равновесия, его скорость максимальна. Тело проскакивает положение равновесия по закону инерции. В этот момент оно обладает максимальной кинетической и минимальной потенциальной энергией. Увеличение кинетической энергии происходит за счет уменьшения потенциальной энергии. При дальнейшем движении начинает увеличиваться потенциальная энергия за счет убыли кинетической энергии и т. д.
Таким образом, при гармонических колебаниях происходит периодическое превращение кинетической энергии в потенциальную и наоборот.
Если в колебательной системе отсутствует трение, то полная механическая энергия при свободных колебаниях остается неизменной.
Для груза на пружине:
Для малых колебаний математического маятника:
Здесь hm – максимальная высота подъема маятника в поле тяготения Земли, xm и υm = ω0xm – максимальные значения отклонения маятника от положения равновесия и его скорости.
Превращения энергии при свободных механических колебаниях в отсутствие трения можно проиллюстрировать графически. Рассмотрим в качестве примера колебания груза массой m на пружине жесткости k. Пусть смещение x(t) груза из положения равновесия и его скорость υ(t) изменяются со временем по законам:
υ(t) = –ωxm sin (ω0t). |
Следовательно,
На рис. 1.2.9 изображены графики функций Ep(t) и Ek(t). Потенциальная и кинетическая энергии два раза за период колебаний достигают максимальных значений. Сумма остается неизменной.
1 |
Рисунок 1.2.9. Превращения энергии при свободных колебаниях. |
В реальных условиях любая колебательная система находится под воздействием сил трения (сопротивления). При этом часть механической энергии превращается во внутреннюю энергию теплового движения атомов и молекул, и колебания становятся затухающими (рис. 1.2.10).
2 |
Рисунок 1.2.10. Затухающие колебания. |
Скорость затухания колебаний зависит от величины сил трения. Интервал времени τ, в течении которого амплитуда колебаний уменьшается в e ≈ 2,7 раз, называется временем затухания.
Частота колебаний зависит от скорости затухания колебаний. При возрастании сил трения частота уменьшается. Однако, изменение собственной частоты становится заметным лишь при достаточно больших силах трения, когда колебания быстро затухают.
Важной характеристикой колебательной системы, совершающей свободные затухающие колебания, является добротность Q. Этот параметр определяется как число N полных колебаний, совершаемых системой за время затухания τ, умноженное на π:
|
Чем медленнее происходит затухание свободных колебаний, тем выше добротность Q колебательной системы. Добротность колебательной системы, определенная по затуханию колебаний на рис. 2.4.2, приблизительно равна 15.
Добротности механических колебательных систем могут быть очень высокими – порядка нескольких сотен и даже тысяч.
Понятие добротности имеет глубокий энергетический смысл. Можно определить добротность Q колебательной системы следующим энергетическим соотношением:
|
Таким образом, добротность характеризует относительную убыль энергии колебательной системы из-за наличия трения на интервале времени, равном одному периоду колебаний.
Yandex.RTB R-A-252273-3
- Введение Предмет физики, и ее связь с другими науками, техникой.
- Величины, измерения, погрешности и округление величин.
- Обработка результатов косвенных измерений.
- Допуск к лабораторной работе
- Оформление конспекта для допуска к лабораторной работе
- Оформление лабораторной работы к зачету
- Г р а ф и к (требования):
- Вывод по графику (шаблон):
- Вывод по ответу (шаблон):
- Механика Второй закон Ньютона.
- Силы в природе Закон всемирного тяготения. Движение тел под действием силы тяжести
- Вес и невесомость
- Сила трения
- Законы сохранения в механике Закон сохранения импульса. Реактивное движение
- Механическая работа и мощность
- Кинетическая и потенциальная энергии
- Закон сохранения механической энергии
- Механические колебания
- Механические колебания Гармонические колебания
- Свободные колебания. Пружинный маятник
- Свободные колебания. Математический маятник
- Превращения энергии при свободных механических колебаниях
- Вынужденные колебания. Резонанс. Автоколебания
- Вопросы и задания для самоконтроля
- Распределение максвелла
- Молекулярно-кинетическая теория
- Основное уравнение мкт газов. Температура
- Уравнение состояния идеального газа. Изопроцессы
- Испарение, конденсация, кипение. Насыщенные и ненасыщенные пары
- Табличные значения
- Вопросы и задания для самоконтроля
- Цикл карно
- Термодинамика Внутренняя энергия. Количество теплоты. Работа в термодинамике
- Первый закон термодинамики
- Теплоемкость идеального газа
- Тепловые двигатели. Термодинамические циклы. Цикл Карно
- Необратимость тепловых процессов. Второй закон термодинамики. Понятие энтропии
- Постоянный электрический ток
- Последовательное и параллельное соединение проводников
- Правила Кирхгофа для разветвленных цепей
- Работа и мощность тока
- Некоторые полезные сведения