logo
Нептун

Строение Нептуна

Внутреннее строение Нептуна напоминает внутреннее строение Урана. Атмосфера составляет примерно 10-20 процентов от общей массы планеты, и расстояние от поверхности до конца атмосферы составляет 10-20 % расстояния от поверхности до ядра. Вблизи ядра давление может достигать 10 гигапаскалей. Объёмные концентрации метана, аммиака и воды найдены в нижних слоях атмосферы.

Постепенно эта более тёмная и более горячая область уплотняется в перегретую жидкую мантию, где температуры достигают 2000-5000 кельвинов. Масса мантии Нептуна превышает Земную в 10-15 раз, по разным оценкам, и богата водой, аммиаком, метаном и прочими соединениями. Как является общепринятым в планетологии, эту материю называют ледяной, хотя это – горячая, очень плотная жидкость. Эту жидкость, обладающую высокой электропроводимостью, иногда называют океаном водного аммиака.

Строение Нептуна:

1. Верхняя атмосфера, верхние облака

2. Атмосфера, состоящая из водорода, гелия и метана

3. Мантия, состоящая из воды, аммиака и метанового льда

4. Каменно-ледяное ядро из железа, никеля и силикатов

На глубине 7000 километров условия таковы, что метан разлагается на алмазные кристаллы, которые «падают» на ядро. Ядро Нептуна состоит из железа, никеля и силикатов. Ядро, как полагают, весит в 1,2 раза больше Земли. Давление в центре достигает 7 мегабар, что в миллионы раз больше, чем на поверхности Земли. Температура в центре, возможно, достигает 5400 кельвинов.

В отличие от Юпитера с Сатурном, Уран и Нептун, возможно, не имеют четкого внутреннего расслоения. Но, скорее всего, у Нептуна есть небольшое твердое ядро, равное по массе Земле.

  1. Атмосфера

В верхних слоях атмосферы обнаружен водород и гелий. Они составляют 80 и 19 % атмосферы на этой высоте, соответственно. Также наблюдаются следы метана.. Как и в случае с Ураном, поглощение красного света метаном – часть того, что придаёт атмосфере Нептуна синий оттенок. Так как содержание метана в атмосфере Нептуна не сильно отличается от содержания метана в атмосфере Урана, полагают, что всё же некий пока неизвестный компонент атмосферы способствует синему цвету.

Планета имеет грозовую атмосферу, тонкие пористые облака, состоящие из замерзшего метана. Температура атмосферы Нептуна выше, чем у Урана, следовательно, около 80% Н2

Атмосфера Нептуна подразделяется на 2 основные области: более низкая тропосфера, где температура падает с высотой, и стратосфера, где температура с высотой увеличивается.

При давлении 1-5 бар, как полагают, формируются облака аммиака и сульфида водорода.

При давлении более 5 баров облака могут состоять из того же аммиака, сульфида аммония, сульфида водорода и воды.

Более глубоко, при давлении в приблизительно 50 бар, могут быть облака из водяного льда, там температура равна 0 C°, не исключено, что и там могут быть найдены облака из аммиака и сульфида водорода.

Высотные облака Нептуна наблюдались по отбрасываемым ими теням на непрозрачный облачный слой ниже уровнем. Среди них выделяются облачные полосы, которые «обёртываются» вокруг планеты на постоянной широте. У этих периферических групп ширина достигает 50-150 километров, и находятся они на 50-110 км выше основного облачного слоя. Изучение спектра Нептуна позволяет предполагать, что его более низкая стратосфера затуманена из-за конденсации продуктов ультрафиолетового фотолиза метана, таких, как этан и ацетилен.

В стратосфере также обнаружены следы циановодорода и угарного газа. Стратосфера Нептуна более тёплая, чем стратосфера Урана из-за более высокой концентрации углеводородов. По невыясненным причинам, термосфера планеты имеет аномально высокую температуру в приблизительно 750 кельвинов. Для столь высокой температуры планета слишком далека от Солнца, чтобы оно могло так разогреть термосферу ультрафиолетовой радиацией. Возможно, это следствие атмосферного взаимодействия с ионами в магнитном поле планеты. Другой кандидат на

механизм разогревания- волны гравитации из внутренних областей планеты, которые рассеиваются в атмосфере. Термосфера содержит следы угарного газа и воды, которая попала туда, возможно, из внешних источников, таких, как метеориты и пыль.

Атмосфера Нептуна очень активна, там постоянно дуют сильные ветры, скорость которых достигает 700 км/ч. Более сильных ветров нет ни на одной другой планете Солнечной системы. Зонд «Вояджер-2» обнаружил на Нептуне мощные циклоны, в которых скорость ветра достигает скорости звука. На Нептуне наблюдаются сильнейшие ветры, параллельные экватору планеты, большие бури и вихри. Ветры дуют на Нептуне в западном направлении, против вращения планеты.

  1. Кольца

У Нептуна есть кольцевая система, хотя она гораздо менее существенная, чем у Сатурна. Кольца могут состоять из ледяных частиц, покрытых силикатами, или основанными на углероде материалами, которые наиболее вероятно придают им (кольцам) красноватый оттенок.

В систему колец Нептуна входит 5 колец: два не широких, но сильно святящихся, и три менее ярких. Кольца разомкнуты (разорваны), т. е. состоят из отдельных дуг, не связанных между собой. По виду кольца Урана и Нептуна похожи.

Относительно узкое, самое внешнее, расположенное в 63 тысячах километров от центра планеты – кольцо Адамса; кольцо Леверье на удалении в 53000 километров от центра и более широкое; более слабое кольцо Галле на расстоянии в 42000 Наиболее удалённое кольцо Адамс, как теперь известно, содержит 5 «дужек» под названием: «Храбрость», «Свобода», «Равенство-1», «Равенство-2». «Братство». Существование этих дуг было трудно объяснить, потому что законы механики предсказывают, что дуги должны были за достаточно короткий момент времени соединиться в однородное кольцо. Считалось, что в таком положении дуги удерживает гравитационный эффект Галатеи (спутник Нептуна), которая обращается вокруг Нептуна вблизи от внутренней границы кольца Адамса. Однако новые исследования показывают, что влияние гравитации Галатеи недостаточно для того, чтобы удерживать кольцо в том положении, в котором он находится сейчас. Наблюдаемые результаты можно объяснить присутствием ещё одного спутника Нептуна, который может иметь достаточно малый размер (до 6 км), и вследствие этого может быть ещё не открыт.

Наблюдения с поверхности Земли, опубликованные в 2005 году, показали, что кольца Нептуна намного более непостоянны, чем ранее мыслилось. Изображения, полученные обсерваторией Кек (Гавайские острова) в 2002 и 2003 году показывают значительные перемены по сравнению с изображениями «Вояджера-2». В частности, кажется что дуга «Свобода» может исчезнуть всего через столетие.

Снимок колец Нептуна, сделанный "Вояджером-2". На внешнем кольце Адамса видны дуги Свобода, Равенство и Братство. Полумесяц в нижнем правом углу - освещенная часть диска Нептуна

Еще один снимок колец Нептуна. Видны яркие узкие кольца Адамса и Леверье и размытые слабые кольца.

  1. Климат

Одно из различий между Нептуном и Ураном – уровень метеорологической активности. «Вояджер-2», пролетавший вблизи Урана в 1986 году, зафиксировал крайне слабую активность атмосферы. В противоположность Урану, Нептун демонстрировал заметные погодные перемены во время съёмки с «Вояджер-2» в 1989 году.

Погода на Нептуне характеризуется чрезвычайно динамической системой штормов, с ветрами, достигающими порой сверхзвуковых скоростей (около 700 м/с).

В ходе отслеживания движения постоянных облаков было зафиксировано изменение скорости ветра от 20 м/с в восточном направлении к 325 м/с на западном.

В верхнем облачном слое скорости ветров разнятся от 400 м/с вдоль экватора до 250 м/с на полюсах.

Большинство ветров на Нептуне дуют в направлении, обратном вращению планеты вокруг своей оси. Общая схема ветров показывает, что на высоких широтах направление ветров совпадает с направлением вращения планеты, а на низких широтах противоположно ему. Различия в направлении воздушных потоков, как полагают, следствие «скин-эффекта», а не каких-либо глубинных атмосферных процессов

Содержание в атмосфере метана, этана и ацетилена в области экватора превышает в десятки и сотни раз содержание этих веществ в области полюсов. Это наблюдение может считаться свидетельством в пользу существования апвеллинга на экваторе Нептуна и его понижения ближе к полюсам. В 2007 году было замечено, что верхняя тропосфера южного полюса Нептуна была на 10 C° теплее, чем остальная часть Нептуна, где температура в среднем составляет −200 C°. Такая разница в температуре достаточна, чтобы метан, который в других областях верхней части атмосферы Нептуна находится в замороженном виде, просачивался в космос на южном полюсе. Эта «горячая точка» – следствие осевого наклона Нептуна, южный полюс которого почти 40 земных лет обращён к Солнцу ( на Нептуне сезоны меняются каждые 40 лет). По мере того, как Нептун будет медленно продвигаться по орбите к противоположной стороне Солнца, южный полюс постепенно уйдёт в тень, и Нептун подставит Солнцу северный полюс. Таким образом, высвобождение метана в космос переместится с южного полюса на северный.