3. Механічна енергія. Закон збереження енергії в механіці. Коефіцієнт корисної дії простих механізмів.
Оскільки тіло здатне виконувати роботу, отже, воно має енергію. Енергія вимірюється тією найбільшою роботою, яку може виконати тіло за певних умов. Залежно від виду процесів природи розглядають різні форми енергії: механічна, внутрішня, електромагнітна, хімічна, ядерна, гравітаційна та ін.
Механічною енергією називають скалярну фізичну величину, яка характеризує здатність тіла виконувати роботу. Одиниця енергії збігається з одиницею роботи.
Розрізняють два види механічної енергії: кінетичну і потенціальну. Кінетичною енергією називають енергію обумовлену рухом тіла. Потенціальною енергією називають енергію обумовлену взаємодією між тілами. Сума кінетичної і потенціальної енергій називають повною механічною енергією тіла.
Енергія - це скалярна фізична характеристика всіх форм руху матерії і варіантів їх взаємодій.
Зміна енергії тіла (системи) ∆E дорівнює роботі A , яку виконала система, або роботі, яку виконали над системою: ∆E = A A = E2 - E1.
Нехай на вільне нерухоме тіло почала діяти постійна сила , тоді виконана нею робота
Вираз (2.3.8) називають кінетичною енергією:
Кінетична енергія притаманна рухомим тілам. Зупиняючись, вони виконують механічну роботу.
У різних системах відліку швидкості одного й того самого тіла в довільний момент часу можуть бути різними. Отже, кінетична енергія - величина відносна; вона залежить від вибору системи відліку.
Якщо на тіло під час руху діє сила (або одночасно декілька сил), кінетична енергія тіла змінюється - тіло прискорюється або зупиняється. При цьому робота сили або рівнодійної сил, прикладених до тіла, дорівнює зміні кінетичної енергії:
Це твердження і формулу (2.3.9), що його виражає, називають теоремою про кінетичну енергію.
Потенціальна енергія залежить від взаємного розташування тіл або частин одного й того самого тіла. Під час падіння тіла масою m з висоти h сила тяжіння виконує роботу
A = mgh.
Оскільки робота і зміна енергії пов'язані рівнянням (2.3.9), можна записати формулу для потенціальної енергії тіла в полі сили тяжіння: Eп = mgh.
На відміну від кінетичної енергії Eк потенційна енергія Eп може мати і від'ємне значення, коли h < 0 (наприклад тіло, що лежить на дні колодязя).
Ще одним видом механічної потенціальної енергії є енергія деформації. Стиснена на відстань x пружина із жорсткістю k має потенціальну енергію (енергію деформації):
Енергія деформації знайшла широке використання на практиці (іграшки), в техніці - автомати і реле та ін.
Одні з найточніших дослідів, які провели в середині ХІХ століття англійський фізик Джоуль і німецький фізик Майєр, показали, що кількість енергії в замкнених системах залишається незмінною. Енергія лише переходить від одних тіл до інших або перетворюється з одного виду в інший. Ці дослідження допомогли відкрити закон збереження і перетворення енергії: повна механічна енергія замкненої системи тіл, які взаємодіють силами тяжіння або пружності, залишається незмінною за будь-яких взаємодій тіл між собою.
Цей закон має надзвичайно важливе теоретичне і практичне значення. На відміну від імпульсу, який не має еквівалентної форми, енергія має багато форм: механічну, теплову, енергію молекулярного руху, електричну енергію із силами взаємодії зарядів та ін. Одна форма може переходити в іншу як, наприклад, кінетична енергія переходить в теплову в процесі гальмування автомобіля. Якщо сил тертя немає і тепло не утворюється, то повна механічна енергія залишається сталою в процесі руху або взаємодії тіл: E = Eк + E п = const.
Якщо між тілами діє сила тертя, тоді механічна енергія зменшується, однак і в цьому разі енергія не втрачається безслідно, а переходить в теплову (внутрішню). Якщо над замкненою системою виконує роботу зовнішня сила, то механічна енергія збільшується на величину виконаної цією силою роботи. Якщо ж замкнена система виконує роботу над зовнішніми тілами, тоді механічна енергія системи зменшується на величину виконаної нею роботи.
Кожен вид енергії може перетворюватися повністю в довільний інший вид енергії. Однак в усіх реальних енергетичних машинах, крім перетворень енергії, для яких використовуються ці машини, відбуваються перетворення енергії, які називають втратами енергії.
Чим менше втрачається енергії, тим досконаліша машина. Ступінь досконалості машини характеризується коефіцієнтом корисної дії (ККД). Його визначають відношенням корисної роботи до затраченої або відношенням потужностей:
У СІ ŋ визначається в частках, а поза СІ - у відсотках. Коефіцієнт корисної дії завжди менший за одиницю. Знаючи ККД певного двигуна чи машини, можна обчислити виконану корисну роботу Aкор = ŋE або корисну потужність Nкор = ŋE.
- Вступ. Фізика як наука. План
- 1. Зародження і розвиток фізики як науки.
- 2. Роль фізичного знання в житті людини й розвитку суспільства.
- 3. Методи наукового пізнання.
- Механічний рух. Система відліку. Відносність руху. Матеріальна точка. Траєкторія. Шлях і переміщення. Швидкість. Додавання швидкостей. Рівномірний прямолінійний рух.
- 1. Механічний рух. Система відліку. Відносність руху. Матеріальна точка. Траєкторія. Шлях і переміщення.
- 3. Рівномірний прямолінійний рух. Графіки залежності кінематичних величин від часу.
- Запитання для самоперевірки
- Прискорення. Рівноприскорений прямолінійний рух. Графіки залежності кінематичних величин від часу. План
- 1. Прискорення. Рівноприскорений прямолінійний рух.
- Запитання для самоперевірки
- Рівномірний рух по колу. Період і частота обертання. Лінійна і кутова швидкості. Доцентрове прискорення. План
- 1. Рівномірний рух по колу. Період і частота обертання. Лінійна і кутова швидкості.
- 2. Доцентрове прискорення.
- Запитання для самоперевірки
- Перший закон Ньютона. Інерціальні системи відліку. Принцип відносності Галілея. План
- 1. Інерція та інертність.
- 2. Інерціальні системи відліку. Принцип відносності Галілея.
- 3. Перший закон Ньютона.
- Запитання для самоперевірки
- Маса. Сила. Додавання сил. Другий закон Ньютона. Третій закон Ньютона. План
- 1. Маса.
- 2. Сила. Додавання сил.
- 3. Другий закон Ньютона.
- 4. Третій закон Ньютона.
- Запитання для самоперевірки
- Гравітаційні сили. Закон всесвітнього тяжіння. Сила тяжіння. Рух під дією сили тяжіння. План
- 1. Гравітаційні сили. Закон всесвітнього тяжіння.
- 2. Сила тяжіння. Рух під дією сили тяжіння.
- Запитання до самоперевірки
- Вага тіла. Невагомість. Рух штучних супутників Землі. Перша космічна швидкість. План
- 1. Вага тіла.
- 2. Невагомість.
- 3. Рух штучних супутників Землі. Перша космічна швидкість.
- Запитання для самоперевірки
- Сила пружності. Закон Гука. Сила тертя. Коефіцієнт тертя. План
- 1. Сила пружності. Закон Гука.
- 2. Сила тертя. Коефіцієнт тертя.
- Запитання для самоперевірки
- Момент сили. Умови рівноваги тіла. Важель. План
- 1. Статика. Умови рівноваги тіла.
- 2. Момент сили.
- Запитання до самоперевірки
- Імпульс (кількість руху) тіла. Закон збереження імпульсу. Реактивний Рух. План
- 1. Імпульс (кількість руху) тіла. Закон збереження імпульсу.
- 2. Реактивний Рух.
- Запитання для самоперевірки
- Механічна робота. Потужність. Кінетична і потенціальна енергія. Закон збереження енергії в механіці. Коефіцієнт корисної дії простих механізмів. План
- 1. Механічна робота. 000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000
- 2. Потужність.
- 3. Механічна енергія. Закон збереження енергії в механіці. Коефіцієнт корисної дії простих механізмів.
- Запитання для самоперевірки
- Основні положення молекулярно-кінетичної теорії та її дослідне обґрунтування. Маса та розмір молекул. Стала Авогадро. План
- 1. Основні положення молекулярно-кінетичної теорії та її дослідне обґрунтування.
- 2. Маса та розмір молекул. Стала Авогадро.
- Запитання для самоперевірки
- 1. Взаємодія атомів і молекул у газах, рідинах і твердих тілах.
- 2. Температура та її вимірювання. Абсолютна температурна шкала. Закон Дальтона.
- 3. Швидкість молекул газу. Дослід Штерна.
- Запитання для самоперевірки
- Ідеальний газ. Основне рівняння молекулярно-кінетичної теорії ідеального газу. План
- 1. Ідеальний газ.
- 2. Основне рівняння молекулярно-кінетичної теорії ідеального газу.
- Запитання для самоперевірки
- Рівняння стану ідеального газу (рівняння Клапейрона - Менделєєва). Ізопроцеси в газах. План
- 1. Рівняння стану ідеального газу.
- 2. Ізопроцеси в газах.
- Запитання для самоперевірки
- Пароутворення (випаровування та кипіння). Конденсація. Питома теплота пароутворення. Насичена і ненасичена пара, їх властивості. План
- 1. Пароутворення (випаровування та кипіння). Конденсація.
- 2. Питома теплота пароутворення.
- 3. Насичена і ненасичена пара, їх властивості.
- Запитання для самоперевірки
- Вологість повітря та її вимірювання. План
- 1. Вологість повітря.
- 2. Точка роси. Вимірювання вологості повітря.
- Запитання для самоперевірки
- Поверхневий натяг рідин. Сила поверхневого натягу. Змочування. Капілярні явища. План
- 1. Поверхневий натяг рідин. Сила поверхневого натягу.
- 2. Змочування.
- 3. Капілярні явища.
- Запитання для самоперевірки
- Кристалічні та аморфні тіла. Механічні властивості твердих тіл. Види деформацій. Модуль Юнга. План
- Запитання для самоперевірки
- 1. Плавлення і тверднення тіл. Питома теплота плавлення.
- 2. Згоряння. Питома теплота згоряння палива.
- 3. Рівняння теплового балансу.
- Запитання для самоперевірки
- Теплове розширення тіл. План
- 1. Теплове розширення твердих тіл, рідин і газів
- 2. Причини теплового розширення.
- 3. Характеризуємо теплове розширення твердих тіл.
- 4. Теплове розширення у природі й техніці.
- Тепловий рух. Внутрішня енергія тіла і способи її зміни. Кількість теплоти. Питома теплоємність речовини. Робота в термодинаміці. План
- 1. Внутрішня енергія тіла і способи її зміни.
- 2. Кількість теплоти. Питома теплоємність речовини.
- 3. Робота в термодинаміці.
- Запитання для самоперевірки
- Закон збереження енергії в теплових процесах (перший закон термодинаміки). Застосування першого закону термодинаміки до ізопроцесів. Адіабатний процес. План
- 1. Закон збереження енергії в теплових процесах (перший закон термодинаміки).
- 2. Застосування першого закону термодинаміки до ізопроцесів. Адіабатний процес.
- 1. Необоротність теплових процесів.
- 2. Принцип дії теплових двигунів. Цикл Карно.
- 3. Коефіцієнт корисної дії теплового двигуна і його максимальне значення.
- 4. Теплові двигуни і проблеми охорони навколишнього середовища.
- Запитання для самоперевірки